FMSG: Cyber: Cybermanufacturing of Wide-Bandgap Semiconductor Devices Enabled by Simulation Augmented Machine Learning

FMSG:网络:通过仿真增强机器学习实现宽带隙半导体器件的网络制造

基本信息

项目摘要

Semiconductor industry is one of the largest manufacturing industries with annual revenue approaching $500 billion. Semiconductor devices are manufactured on large-diameter wafers through multiple process steps. Yield is a key metric determining the success in semiconductor manufacturing. The current practice of yield management relies on minimizing the wafer material non-uniformity, maximizing the process control in every step, and applying necessary process adaptions to the entire wafer based on domain expertise. However, the manufacturing yield of emerging semiconductor devices, e.g., wide-bandgap (WBG) devices, is merely 50-80% in the foundry, due to less mature materials and processes. While WBG devices are gaining quick adoption in applications like electric vehicles, data centers, 5G communications, and power grids, the limited yield of their manufacturing has become an increasingly serious concern. This Future Manufacturing Seed Grant (FMSG) CyberManufacturing project suggests the self-predictive and self-adaptive cybermanufacturing of semiconductor devices implemented through die- or device-based (instead of wafer-based) adaptions in each process step guided by a physical simulation augmented machine learning (ML) framework. In this semiconductor cybermanufacturing, which does not exist today, device-to-device adaptions in geometrics and designs are applied in each process step to intelligently compensate for the variability in inherent material properties and historical process steps. This seed grant will use the small-scale fabrication of WBG power diodes as a demonstration vehicle to establish the knowledge base related to the integration of ML in adaptive semiconductor manufacturing. The new manufacturing paradigm can potentially lead to the formation of new industries at the intersection of ML and semiconductors. This project also presents a unique venue to train future technicians with the capabilities of tackling interdisciplinary problems in ML-guided semiconductor manufacturing. This interdisciplinary project will be utilized to support undergraduate research activities and outreach activities for K-12 students. The objective of this seed grant is to identify and address the fundamental knowledge gaps related to the semiconductor cybermanufacturing, using the small-scale fabrication of vertical gallium nitride power diodes as a demonstration vehicle, which is an emerging WBG device for power applications in electric vehicles and power grids. The intellectual merits of this project are rooted in the fundamentally new philosophy for semiconductor device manufacturing, i.e., the die-to-die, device-to-device adaptions produced by analytic and predictive ML models. To realize this new manufacturing paradigm, this project will focus on tacking the following problems: (a) New data frameworks will be explored for the development of ML models applicable to physical electronic devices. Experimental device data, which are expensive in terms of cost and time, will be augmented by physical simulation data by 1,000-10,000 times using the Technology Computer-Aided Design simulations. (b) Innovative ML models will be explored for the forward process (predict device performance metrics from a given set of material/device parameters) and inverse process (deduce future process parameters for the given device characteristics, the measured historical process step parameters, and the design objectives). (c) The proposed framework will be experimentally demonstrated through pilot manufacturing on the test vehicle, and the final yield enhancement will be characterized and evaluated.This Future Manufacturing project is jointly funded by the Divisions of ECCS and CMMI in the Directorate of Engineering and the Division of CHE in the Directorate for Mathematical and Physical Sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
半导体行业是最大的制造业之一,年收入接近5000亿美元。通过多个工艺步骤在大直径晶片上制造半导体器件。成品率是决定半导体制造成功的关键指标。目前的良率管理实践依赖于最小化晶片材料的不均匀性,最大化每个步骤中的工艺控制,以及基于领域专业知识对整个晶片应用必要的工艺适应。然而,新兴半导体器件的制造良率,例如,由于不太成熟的材料和工艺,宽带隙(WBG)器件在代工厂中仅占50-80%。虽然WBG设备在电动汽车、数据中心、5G通信和电网等应用中得到了快速采用,但其制造的产量有限已成为一个日益严重的问题。这个未来制造种子基金(FMSG)网络制造项目建议通过在物理仿真增强机器学习(ML)框架指导下的每个工艺步骤中基于芯片或器件(而不是基于晶圆)的适应来实现半导体器件的自预测和自适应网络制造。在这种目前尚不存在的半导体网络制造中,在每个工艺步骤中应用几何和设计中的器件到器件的适配,以智能地补偿固有材料特性和历史工艺步骤的可变性。该种子基金将使用WBG功率二极管的小规模制造作为示范工具,以建立与自适应半导体制造中ML集成相关的知识库。新的制造模式可能会在ML和半导体的交叉点形成新的产业。该项目还提供了一个独特的场所,以培养未来的技术人员,解决ML引导的半导体制造中的跨学科问题的能力。这个跨学科项目将用于支持本科生的研究活动和K-12学生的推广活动。 该种子基金的目的是确定和解决与半导体网络制造相关的基本知识差距,使用垂直氮化镓功率二极管的小规模制造作为示范车辆,这是一种新兴的WBG器件,用于电动汽车和电网的功率应用。该项目的智力价值植根于半导体器件制造的全新理念,即,由分析和预测ML模型产生的管芯到管芯、器件到器件的适配。为了实现这种新的制造模式,该项目将重点解决以下问题:(a)将探索新的数据框架,以开发适用于物理电子设备的ML模型。在成本和时间方面昂贵的实验设备数据将通过使用技术计算机辅助设计模拟的物理模拟数据增加1000 - 10000倍。(b)将针对正向过程(根据给定的材料/器械参数集预测器械性能指标)和反向过程(针对给定器械特性、测量的历史过程步骤参数和设计目标推导未来过程参数)探索创新ML模型。(c)所提出的框架将通过在测试车辆上的试验性制造进行实验性证明,该未来制造项目由工程局的ECCS和CMMI部门以及数学和物理科学局的CHE部门共同资助。该奖项反映了NSF的法定使命,并被认为值得支持通过使用基金会的知识价值和更广泛的影响审查标准进行评估。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Robust Avalanche in 1.7 kV Vertical GaN Diodes With a Single-Implant Bevel Edge Termination
  • DOI:
    10.1109/led.2023.3302312
  • 发表时间:
    2023-10
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    M. Xiao;Y. Wang;Ruizhe Zhang;Q. Song;M. Porter;E. Carlson;K. Cheng;K. Ngo;Yuhao Zhang
  • 通讯作者:
    M. Xiao;Y. Wang;Ruizhe Zhang;Q. Song;M. Porter;E. Carlson;K. Cheng;K. Ngo;Yuhao Zhang
Study of Vertical Ga 2 O 3 FinFET Short Circuit Ruggedness using Robust TCAD Simulation
使用稳健 TCAD 仿真研究垂直 Ga 2 O 3 FinFET 短路耐用性
Rapid Inverse Design of GaN-on-GaN Diode with Guard Ring Termination for BV and (V F Q) −1 Co-Optimization
具有保护环终端的 GaN-on-GaN 二极管的快速逆向设计,用于 BV 和 (V F Q) â1 协同优化
TCAD Simulation Models, Parameters, and Methodologies for β-Ga 2 O 3 Power Devices
β-Ga 2 O 3 功率器件的 TCAD 仿真模型、参数和方法
Vertical GaN diode BV maximization through rapid TCAD simulation and ML-enabled surrogate model
通过快速 TCAD 仿真和支持 ML 的替代模型实现垂直 GaN 二极管 BV 最大化
  • DOI:
    10.1016/j.sse.2022.108468
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Lu, Albert;Marshall, Jordan;Wang, Yifan;Xiao, Ming;Zhang, Yuhao;Wong, Hiu Yung
  • 通讯作者:
    Wong, Hiu Yung
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yuhao Zhang其他文献

An Enhanced Topic Modeling Approach to Multiple Stance Identification
一种增强的多立场识别主题建模方法
A Knowledge-Enriched and Span-Based Network for Joint Entity and Relation Extraction
用于联合实体和关系提取的知识丰富且基于跨度的网络
  • DOI:
    10.32604/cmc.2021.016301
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kun Ding;Shanshan Liu;Yuhao Zhang;Hui Zhang;Xiaoxiong Zhang;Tongtong Wu;Xiaolei Zhou
  • 通讯作者:
    Xiaolei Zhou
Image Classification in Greenplum Database Using Deep Learning
使用深度学习在 Greenplum 数据库中进行图像分类
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Oliver Albertini;Divya Bhargov;Alex Denissov;Francisco Guerrero;Nandish Jayaram;Nikhil Kak;Ekta Khanna;Orhan Kislal;Arun Kumar;F. Mcquillan;Lisa Owen;V. Raghavan;Domino Valdano;Yuhao Zhang;VMware;San Diego
  • 通讯作者:
    San Diego
Point stabilization of nonholonomic mobile robot by Bzier smooth subline constraint nonlinear model predictive control
Bzier光滑子线约束非线性模型预测控制非完整移动机器人的点稳定
Position design of the casing shoe of an abandoned horizontal salt cavern to be used for gas storage
废弃水平盐穴储气库套管鞋位置设计

Yuhao Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yuhao Zhang', 18)}}的其他基金

ASCENT: Optically-Driven Ultra-Wide-Bandgap Power Electronics for Grid Energy Conversion
ASCENT:用于电网能量转换的光驱动超宽带隙电力电子器件
  • 批准号:
    2230412
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Nitride FinFET on Silicon for Medium-Voltage Monolithically Integrated Power Electronics
事业:用于中压单片集成电力电子器件的硅基氮化物 FinFET
  • 批准号:
    2045001
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Collaborative Research: ECCS-EPSRC: Nitride Super-Junction HEMTs for Robust, Efficient, Fast Power Switching
合作研究:ECCS-EPSRC:用于稳健、高效、快速功率开关的氮化物超级结 HEMT
  • 批准号:
    2036740
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

Cyber体系脆弱性仿真分析方法研究
  • 批准号:
    61403400
  • 批准年份:
    2014
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
基于复杂网络理论的Cyber体系效能仿真分析方法研究
  • 批准号:
    61374179
  • 批准年份:
    2013
  • 资助金额:
    77.0 万元
  • 项目类别:
    面上项目
面向智能电网基础设施Cyber-Physical安全的自治愈基础理论研究
  • 批准号:
    61300132
  • 批准年份:
    2013
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
Cyber攻击对国家关键基础设施级联失效影响建模仿真研究
  • 批准号:
    61174035
  • 批准年份:
    2011
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
基于Cyber空间的体系脆弱性仿真分析方法研究
  • 批准号:
    61174156
  • 批准年份:
    2011
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目

相似海外基金

Harnessing the power of ordinary people to prevent cyber abuse
利用普通人的力量来防止网络滥用
  • 批准号:
    DE240100080
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Early Career Researcher Award
CyberCorps Scholarship for Service: Building Research-minded Cyber Leaders
Cyber​​Corps 服务奖学金:培养具有研究意识的网络领导者
  • 批准号:
    2336409
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Game Theoretic Models for Robust Cyber-Physical Interactions: Inference and Design under Uncertainty
职业:稳健的网络物理交互的博弈论模型:不确定性下的推理和设计
  • 批准号:
    2336840
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Cybersecurity Workforce: Bridging the Gap in Appalachian Ohio (Cyber-Workforce)
网络安全劳动力:缩小俄亥俄州阿巴拉契亚地区的差距(网络劳动力)
  • 批准号:
    2350520
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
  • 批准号:
    2414607
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Psychology-aware Human-in-the-Loop Cyber-Physical-System (HCPS): Methodologies, Algorithms, and Deployment
职业:具有心理学意识的人在环网络物理系统 (HCPS):方法、算法和部署
  • 批准号:
    2339266
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
  • 批准号:
    2414606
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CRII: CPS: FAICYS: Model-Based Verification for AI-Enabled Cyber-Physical Systems Through Guided Falsification of Temporal Logic Properties
CRII:CPS:FAICYS:通过时态逻辑属性的引导伪造,对支持人工智能的网络物理系统进行基于模型的验证
  • 批准号:
    2347294
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SBIR Phase I: A Cyber Assured Space Internet Device
SBIR 第一阶段:网络安全空间互联网设备
  • 批准号:
    2327618
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
  • 批准号:
    2322534
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了