EAGER: Synchronized Quantum Oscillation between Light and Atoms on a Resonator
EAGER:谐振器上光和原子之间的同步量子振荡
基本信息
- 批准号:2134931
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-15 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Laser trapping of atoms and cryogenic cooling techniques are employed in developing quantum technologies such as quantum processors, quantum communication devices and quantum sensors. When it comes to practical applications, small form factor and scalable design of hardware components is critical in large-scale integration and adoptability of the technology. For this reason, quantum devices operating at room temperature can have transformational impact in the future of quantum technologies. At a system level, the efficient and deterministic distribution of quantum entanglement is key to developing a future quantum network. A network of this kind has applications in networked sensing for global parameter estimation, secure communication, and distributed quantum computing. The probabilistic nature of entanglement creation in today’s available devices and platforms has limited the size of networks to three nodes, beyond which the exponential growth in entanglement time undermines the quantum advantage. The strong atom-photon interaction pursued in this program can lead to exponentially increased communication rate which together with the room-temperature operation and lack of complexity in the system, will pave the way for practical entanglement distribution between multiple nodes. The program will train 2 capable graduate students towards PhDs with deep understanding and expertise across different disciplines, adding to the Quantum Workforce.The quantum network project (2000) aimed to deploy quantum optical technology to establish the first quantum key distribution (QKD) network. Twenty years later, QKD is still the most practical application of quantum optics in communication. The challenges preventing the community from going beyond QKD are a) probabilistic light-atom interaction, b) lack of scalability and multiplexing quantum communication devices, and c) incompatibility and the need for heterogenous integration. The EAGER program aims to develop a miniaturized room temperature light-atom interface that can enable scalable quantum entanglement distribution. Unlike laser-cooled atomic quantum systems and their need for precise control, alignment and challenges to miniaturization, thermal atomic vapors have already wide-spread adoption in systems such as chip-scale atomic clocks. By guiding atoms on a chip using MEMS actuators towards photonic resonators, this project plans to realize strong and coherent interaction between photons and room temperature atoms. The coherence time on the order of photon lifetime in the cavity is sufficient to achieve deterministic entanglement. To achieve this, we increase photon lifetime by increasing the optical quality factor of microphotonic resonator and increasing atom coherence time by selectively guiding atoms near the resonator mode. The proposed platform is efficiently fiber-coupled and will be used to study non-linear photon-atom and photon-photon interactions. This strong interaction between light and atoms, enabled by MEMS, will be utilized deterministically create photon pair generation for scalable entanglement distribution in an optical network.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
激光俘获原子和低温冷却技术被用于开发量子技术,如量子处理器,量子通信设备和量子传感器。在实际应用中,硬件组件的小尺寸和可扩展设计对于该技术的大规模集成和可采用性至关重要。因此,在室温下运行的量子设备可以对量子技术的未来产生变革性的影响。在系统层面,量子纠缠的有效和确定性分布是开发未来量子网络的关键。这种类型的网络在用于全局参数估计、安全通信和分布式量子计算的网络传感中有应用。在当今可用的设备和平台中,纠缠产生的概率性质将网络的大小限制在三个节点,超过这个节点,纠缠时间的指数增长就会破坏量子优势。该计划中追求的强原子-光子相互作用可以导致通信速率呈指数级增加,再加上室温操作和系统中缺乏复杂性,将为多个节点之间的实际纠缠分配铺平道路。该计划将培养2名有能力的研究生攻读博士学位,对不同学科有深入的理解和专业知识,增加量子劳动力。量子网络计划(2000年)旨在部署量子光学技术,建立第一个量子密钥分发(QKD)网络。20年后的今天,QKD仍然是量子光学在通信中最实际的应用。阻止社区超越QKD的挑战是a)概率光原子相互作用,B)缺乏可扩展性和多路复用量子通信设备,以及c)不兼容性和对异构集成的需求。EAGER计划旨在开发一种小型化的室温光原子接口,可以实现可扩展的量子纠缠分布。与激光冷却的原子量子系统及其对精确控制、对准和小型化挑战的需求不同,热原子蒸汽已经在芯片级原子钟等系统中得到广泛采用。通过使用MEMS致动器将芯片上的原子引导到光子谐振器,该项目计划实现光子与室温原子之间的强相干相互作用。腔中光子寿命量级的相干时间足以实现确定性纠缠。为了实现这一点,我们增加光子寿命,提高微光子谐振腔的光学品质因子和增加原子相干时间,通过选择性地引导原子附近的谐振腔模式。所提出的平台是有效的光纤耦合,并将用于研究非线性光子-原子和光子-光子相互作用。这种由MEMS实现的光和原子之间的强相互作用将被确定性地用于在光网络中创建可扩展纠缠分布的光子对生成。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估而被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Realization of efficient 3D tapered waveguide-to-fiber couplers on a nanophotonic circuit
- DOI:10.1364/oe.468738
- 发表时间:2022-08-29
- 期刊:
- 影响因子:3.8
- 作者:Chang, Tzu-Han;Zhou, Xinchao;Hung, Chen-Lung
- 通讯作者:Hung, Chen-Lung
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sunil Bhave其他文献
Native signal processing on the Ultrasparc in the Ptolemy environment
Ptolemy 环境中 Ultrasparc 上的本机信号处理
- DOI:
10.1109/acssc.1996.599173 - 发表时间:
1996 - 期刊:
- 影响因子:0
- 作者:
William Chen;H. J. Reekie;Sunil Bhave;Edward A. Lee - 通讯作者:
Edward A. Lee
Sunil Bhave的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sunil Bhave', 18)}}的其他基金
RAISE-TAQS: Multifunctional Hybrid Quantum Systems for Spin-Based Quantum Control and Metrology
RAISE-TAQS:用于基于自旋的量子控制和计量的多功能混合量子系统
- 批准号:
1839164 - 财政年份:2018
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
SGER: Fullerene Thin Film for Chipscale Micro and Nanosytems
SGER:用于芯片级微纳米系统的富勒烯薄膜
- 批准号:
0912271 - 财政年份:2009
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CAREER: Dielectrically Transduced MEMS Resonators for Communication and Computation
职业:用于通信和计算的介电转换 MEMS 谐振器
- 批准号:
0644868 - 财政年份:2007
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似海外基金
Travel: 2024 International Conference on Smart Grid Synchronized Measurements and Analytics
旅行:2024 年智能电网同步测量与分析国际会议
- 批准号:
2401605 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Elucidation of synchronized spawning mechanism in corals
阐明珊瑚同步产卵机制
- 批准号:
22KF0317 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Investigation of synchronized phenomena and its application to chaos control in a laboratory plasma
同步现象的研究及其在实验室等离子体混沌控制中的应用
- 批准号:
23K03355 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
SYNCHROMODE - Advanced traffic management solutions for synchronized and resilient multimodal transport services
SYNCHROMODE - 用于同步和弹性多式联运服务的先进交通管理解决方案
- 批准号:
10069459 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
EU-Funded
Collaborative Research: EAGER: Real-time Strategies and Synchronized Time Distribution Mechanisms for Enhanced Exascale Performance-Portability and Predictability
合作研究:EAGER:实时策略和同步时间分配机制,以增强百亿亿次性能-可移植性和可预测性
- 批准号:
2405142 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Research on double tunnel qubits by proton-synchronized electron transfer
质子同步电子转移双隧道量子位研究
- 批准号:
23H01979 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
ERI: Drones-Enabled Active Sensing System (DEASS) for Detection of Subsurface Defects in Civil Infrastructure through Synchronized Drone Swarming and Thermal Imaging
ERI:无人机主动传感系统 (DEASS),通过同步无人机群和热成像检测民用基础设施中的地下缺陷
- 批准号:
2312081 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Instrument Development: Modular, Multitrack, and Multifunctional Linearly Polarized Spectrometer for Synchronized Multispectral Characterization of Molecular Assembly
仪器开发:用于分子组装同步多光谱表征的模块化、多道和多功能线性偏振光谱仪
- 批准号:
2203571 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Real-time Strategies and Synchronized Time Distribution Mechanisms for Enhanced Exascale Performance-Portability and Predictability
合作研究:EAGER:实时策略和同步时间分配机制,以增强百亿亿次性能-可移植性和可预测性
- 批准号:
2151021 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Real-time Strategies and Synchronized Time Distribution Mechanisms for Enhanced Exascale Performance-Portability and Predictability
合作研究:EAGER:实时策略和同步时间分配机制,以增强百亿亿次性能-可移植性和可预测性
- 批准号:
2151022 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant