The Fluid Mechanics of Bacterial Swimming in Yield Stress Fluids
屈服应力流体中细菌游动的流体力学
基本信息
- 批准号:2135617
- 负责人:
- 金额:$ 45.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-12-01 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Biological fluids such as mucous can behave like elastic solids or complex viscous liquid depending on the applied stress. The goal of this project is to understand the fluid mechanics of bacterial swimming in model complex fluids that resemble biological fluids. This comprehensive theoretical, computational, and experimental study will fill an important knowledge gap in understanding the relationship between the properties of biological fluids and the mechanics of bacterial motility. Swimming capabilities significantly contribute to the virulence of pathogenic bacteria by allowing them to reach the plasma membrane of susceptible cells and cause systemic infections. Therefore, data acquired in the project will be useful to researchers who want to mitigate or treat bacterial diseases. It will also be crucial for bioengineers aiming to deliver drugs via bacteria or synthetic swimmers. In addition, the project will provide outreach that inspires interest in engineering among K-12 students by illustrating the societal impact of engineering science. Bacterial motility in biological fluids such as mucous is complicated by the presence of a yield stress, a minimal stress necessary to deform the fluid, the coupled viscous and elastic responses of the fluid, and the non-continuum nature arising because the bacterium’s flagella have a thickness comparable with the spacing between mucus strands. A novel computational approach accounting for this complex rheology will capture the bacterium cell using an immersed boundary method and the bundle of flagella using slender-body theory. The solvent and polymer will be modeled as two interpenetrating fluids with the thin flagella exerting their stresses directly only on the solvent. In complementary experiments, nanoparticle organic hybrid bio-compatible materials will be designed with rheology and structure that mimic the biological fluids. Dark-field and phase-contrast microscopy of suspensions of E. coli will provide statistically accurate measurements of the swimming speed and cell rotation rate distribution. In microscopy tracking individual cells, separate fluorescent dyes will enable the determination of the different rotation rates of the cell and flagella bundle. Observations in Newtonian fluids will be used to characterize the rotary motors that drive the flagella. The motility measurements will be performed in collaboration with Professor Wilson Poon at the University of Edinburgh. The experiments will determine the criterion for cells to swim, the speed of cells that do swim, and the distinct resistances the non-continuum fluid exert on the cell and flagella, thereby testing three crucial predictions of the computation and theory.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
生物流体,如粘液,根据施加的应力可以表现为弹性固体或复杂的粘性液体。该项目的目标是了解细菌在类似生物流体的复杂流体模型中游泳的流体力学。这项全面的理论、计算和实验研究将填补理解生物流体特性与细菌运动力学之间关系的重要知识空白。游泳能力通过允许致病菌到达易感细胞的质膜并引起全身性感染,显著地促进了致病菌的毒力。因此,在该项目中获得的数据将对想要减轻或治疗细菌性疾病的研究人员有用。对于那些希望通过细菌或合成游泳者来输送药物的生物工程师来说,这也是至关重要的。此外,该项目还将通过说明工程科学的社会影响,激发K-12学生对工程的兴趣。细菌在诸如黏液之类的生物流体中的运动由于屈服应力的存在而变得复杂,屈服应力是使流体变形所必需的最小应力,流体的耦合粘性和弹性响应,以及由于细菌鞭毛的厚度与黏液链之间的间距相当而产生的非连续性。一种新的计算方法来解释这种复杂的流变性,将使用浸入边界法捕获细菌细胞,并使用细长体理论捕获鞭毛束。溶剂和聚合物将被模拟为两种相互渗透的流体,薄鞭毛只对溶剂直接施加应力。在补充实验中,纳米颗粒有机杂化生物相容性材料将被设计成具有模拟生物流体的流变学和结构。大肠杆菌悬浮液的暗场和相衬显微镜将提供统计上准确的游泳速度和细胞旋转速率分布的测量。在显微镜下跟踪单个细胞,单独的荧光染料将能够确定细胞和鞭毛束的不同旋转速率。在牛顿流体中的观察结果将用于表征驱动鞭毛的旋转马达。运动测量将与爱丁堡大学的Wilson Poon教授合作进行。实验将确定细胞游动的标准,细胞游动的速度,以及非连续流体对细胞和鞭毛施加的不同阻力,从而测试计算和理论的三个关键预测。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sarah Hormozi其他文献
Flow development and interface sculpting in stable lubricated pipeline transport
- DOI:
10.1016/j.jnnfm.2018.07.005 - 发表时间:
2018-11-01 - 期刊:
- 影响因子:
- 作者:
Parisa Sarmadi;Sarah Hormozi;Ian A. Frigaard - 通讯作者:
Ian A. Frigaard
Three dimensional simulation of flow development of triple-layer lubricated pipeline transport
- DOI:
10.1016/j.jnnfm.2019.104201 - 发表时间:
2019-12-01 - 期刊:
- 影响因子:
- 作者:
Parisa Sarmadi;Otto Mierka;Stefan Turek;Sarah Hormozi;Ian A. Frigaard - 通讯作者:
Ian A. Frigaard
A hybrid asymptotic-numerical method for calculating drag coefficients in 2-D low Reynolds number flows
计算二维低雷诺数流动阻力系数的混合渐近数值方法
- DOI:
10.1007/s10665-014-9701-x - 发表时间:
2014 - 期刊:
- 影响因子:1.3
- 作者:
Sarah Hormozi;M. Ward - 通讯作者:
M. Ward
Sarah Hormozi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sarah Hormozi', 18)}}的其他基金
Viscous and Inertial Nonlocal Rheology of Dense Suspensions of Frictionless Particles
无摩擦颗粒致密悬浮液的粘性和惯性非局部流变学
- 批准号:
2210322 - 财政年份:2022
- 资助金额:
$ 45.94万 - 项目类别:
Standard Grant
CAREER: Suspensions of Noncolloidal Particles in Yield Stress Fluids: Fluid Mechanics, Rheology and Microstructure
职业:屈服应力流体中非胶体颗粒的悬浮液:流体力学、流变学和微观结构
- 批准号:
2050396 - 财政年份:2020
- 资助金额:
$ 45.94万 - 项目类别:
Standard Grant
CAREER: Suspensions of Noncolloidal Particles in Yield Stress Fluids: Fluid Mechanics, Rheology and Microstructure
职业:屈服应力流体中非胶体颗粒的悬浮液:流体力学、流变学和微观结构
- 批准号:
1554044 - 财政年份:2016
- 资助金额:
$ 45.94万 - 项目类别:
Standard Grant
相似国自然基金
Science China-Physics, Mechanics & Astronomy
- 批准号:11224804
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Collaborative Research: Elucidating the Diversity of Bacterial Flagellation and Motility Through Mechanics
合作研究:通过力学阐明细菌鞭毛和运动的多样性
- 批准号:
2027417 - 财政年份:2021
- 资助金额:
$ 45.94万 - 项目类别:
Standard Grant
Collaborative Research: Elucidating the Diversity of Bacterial Flagellation and Motility Through Mechanics
合作研究:通过力学阐明细菌鞭毛和运动的多样性
- 批准号:
2027410 - 财政年份:2021
- 资助金额:
$ 45.94万 - 项目类别:
Standard Grant
CAREER: Understanding the Multi-scale Failure Mechanics of Human Skin with Age, Ultraviolet Photodamage and Bacterial Growth
职业:了解人类皮肤随年龄、紫外线光损伤和细菌生长的多尺度失效机制
- 批准号:
1653071 - 财政年份:2017
- 资助金额:
$ 45.94万 - 项目类别:
Standard Grant
Development of evaluation method for bacterial motility based on the flow dynamics and the large deviation mechanics
基于流动动力学和大偏差力学的细菌运动性评价方法的建立
- 批准号:
23760161 - 财政年份:2011
- 资助金额:
$ 45.94万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Collaborative Research: Mechanics and Structural Polymorphism of Bacterial Flagellar Assemblies
合作研究:细菌鞭毛组件的力学和结构多态性
- 批准号:
1068566 - 财政年份:2011
- 资助金额:
$ 45.94万 - 项目类别:
Standard Grant
Collaborative Research: Mechanics and Structural Polymorphism of Bacterial Flagellar Assemblies
合作研究:细菌鞭毛组件的力学和结构多态性
- 批准号:
1068852 - 财政年份:2011
- 资助金额:
$ 45.94万 - 项目类别:
Standard Grant
Modeling the mechanics of the division apparatus in bacterial cells
模拟细菌细胞分裂装置的力学
- 批准号:
383495-2009 - 财政年份:2009
- 资助金额:
$ 45.94万 - 项目类别:
University Undergraduate Student Research Awards
The Mechanics of Genome Ejection in Bacterial Viruses
细菌病毒基因组喷射的机制
- 批准号:
0758343 - 财政年份:2008
- 资助金额:
$ 45.94万 - 项目类别:
Standard Grant
Single motor mechanics of bacterial flagellar motor
细菌鞭毛运动的单运动力学
- 批准号:
20570147 - 财政年份:2008
- 资助金额:
$ 45.94万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




