NSF-BSF: Ion transport and selectivity in salt-rejecting membranes operating at elevated salinities and pressures
NSF-BSF:在高盐度和压力下运行的脱盐膜中的离子传输和选择性
基本信息
- 批准号:2136835
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Extremely salty water is produced in enormous quantities as waste from brackish water and seawater desalination, and oil and gas production. Purifying these wastewaters is a significant priority because it (1) advances human welfare and prosperity by increasing water supplies and (2) protects public health by reducing the discharge of potentially harmful wastewaters. Despite the importance of purifying very salty waters, current purification processes require substantial amounts of thermal energy or heat. This research project will investigate how to use polymer membranes to treat extremely salty water sources. Such membrane treatments can use less than one-tenth of the energy compared to conventional thermal systems. Novel experiments and molecular simulations will be used to better understand how polymer membranes perform under the high salt and high-pressure conditions needed for purifying this type of wastewater. The knowledge gained by these experiments will make it possible to develop polymer membranes specifically for high-salt wastewaters. Students researchers will collaborate directly with international partners, including travelling to Israel to improve cultural and scientific exchange. Undergraduate education will be improved through the creation of an innovative “Engineered Solutions to Water Scarcity” module where collaborators serve as guest lecturers. The interdisciplinary nature of this project will enhance mentorship of underrepresented and first-generation university undergraduate students through the CU Boulder BOLD Center by motivating interest in chemical engineering, environmental engineering, and separations science. Outreach to high-school students will be accomplished by developing and implementing classroom lessons, hands-on activities, and a short video that will be made publicly available on global water scarcity challenges and engineered solutions. The research project will elucidate mechanisms governing ion transport in membranes during high-salinity brine treatment and create a framework for designing membranes with improved water-salt selectivity by tuning chemistry and structure. The central hypothesis is that elevated salinity and pressure cause significant variations in the intrinsic ion transport properties through polymer deswelling, electrostatic charge shielding, membrane compaction, and fundamental changes in ionic hydration properties. The impact of extreme salinity and pressure conditions on these phenomena will be comprehensively investigated using advanced transport characterization techniques. In particular, transition state theory will be applied to membrane permeability to elucidate molecular-level enthalpy- and entropy-related effects that occur during ion transport and stem from extreme salinity and pressure conditions. Such molecular-level effects will be further explored using molecular simulations of ion transport through the membrane. Based on the insights gained, increasing water-salt selectivity of membranes at elevated salinity and pressure using tailored charge, hydrophobicity, and crosslinking density will be explored. Ultimately, the results of this project will reveal the effect of high salinity and pressure on molecular transport under the extreme confinement of reverse osmosis and nanofiltration membrane pores, improve the fundamental understanding of ion transport in polymers, and create design recommendations that will aid in the development of membrane-based processes for high-salinity brine treatment.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
从咸水和海水淡化以及石油和天然气生产产生的废物中,会产生大量极咸的水。净化这些废水是一个重要的优先事项,因为它(1)通过增加供水来促进人类的福祉和繁荣,(2)通过减少潜在有害废水的排放来保护公众健康。尽管净化非常咸的水很重要,但目前的净化过程需要大量的热能或热量。这项研究项目将研究如何使用聚合物膜来处理极咸的水源。与传统的加热系统相比,这种膜处理可以使用不到十分之一的能量。新的实验和分子模拟将被用来更好地了解聚合物膜在高盐和高压条件下的性能,这是净化这类废水所需的。通过这些实验获得的知识将使开发专门用于高盐废水的聚合物膜成为可能。学生和研究人员将直接与国际合作伙伴合作,包括前往以色列促进文化和科学交流。将通过创建一个创新的“解决水资源短缺的工程解决方案”模块来改进本科教育,由合作者担任客座讲师。该项目的跨学科性质将通过CU Boulder BOLD中心激发人们对化学工程、环境工程和分离科学的兴趣,加强对未被充分代表的第一代大学本科生的指导。将通过开发和实施课堂课程、实践活动和将公开提供的关于全球缺水挑战和工程解决方案的短片,实现对高中生的推广。该研究项目将阐明高盐度盐水处理过程中膜中离子传输的机制,并通过调整化学和结构来创建设计具有更高水盐选择性的膜的框架。中心假设是,盐度和压力的升高通过聚合物脱胀、静电电荷屏蔽、膜压实和离子水化性质的根本改变,导致固有离子传输性质的显著变化。将使用先进的传输表征技术全面调查极端盐度和压力条件对这些现象的影响。特别是,过渡态理论将被应用于膜的渗透性,以阐明在离子传输过程中发生的与分子水平的焓和熵相关的效应,这些效应源于极端的盐度和压力条件。这种分子水平的效应将通过对离子通过膜的传输的分子模拟来进一步探索。基于所获得的洞察力,将探索在盐度和压力升高的情况下使用定制的电荷、疏水性和交联度来提高膜的水盐选择性。最终,该项目的结果将揭示高盐度和高压力对反渗透和纳滤膜孔极端限制下的分子传输的影响,提高对聚合物中离子传输的基本了解,并创建有助于开发基于膜的高盐度盐水处理过程的设计建议。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anthony Straub其他文献
Anthony Straub的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anthony Straub', 18)}}的其他基金
GOALI: Integrated Oxidation Vapor-gap Reverse Osmosis Systems for Water Reuse
GOALI:用于水回用的集成氧化汽隙反渗透系统
- 批准号:
2227273 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
相似国自然基金
枯草芽孢杆菌BSF01降解高效氯氰菊酯的种内群体感应机制研究
- 批准号:31871988
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
基于掺硼直拉单晶硅片的Al-BSF和PERC太阳电池光衰及其抑制的基础研究
- 批准号:61774171
- 批准年份:2017
- 资助金额:63.0 万元
- 项目类别:面上项目
B细胞刺激因子-2(BSF-2)与自身免疫病的关系
- 批准号:38870708
- 批准年份:1988
- 资助金额:3.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321481 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321480 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
NSF-BSF: Many-Body Physics of Quantum Computation
NSF-BSF:量子计算的多体物理学
- 批准号:
2338819 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
- 批准号:
2333889 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
- 批准号:
2333888 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
- 批准号:
2134594 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
NSF-BSF Combinatorial Set Theory and PCF
NSF-BSF 组合集合论和 PCF
- 批准号:
2400200 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
NSF-BSF: CDS&E: Tensor Train methods for Quantum Impurity Solvers
NSF-BSF:CDS
- 批准号:
2401159 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
- 批准号:
2420942 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant