CAREER: Automated Analysis and Design of Optimization Algorithms

职业:优化算法的自动分析和设计

基本信息

  • 批准号:
    2136945
  • 负责人:
  • 金额:
    $ 46.73万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-06-15 至 2024-10-31
  • 项目状态:
    已结题

项目摘要

Iterative optimization algorithms lie at the heart of modern data-intensive applications such as machine learning, computer vision, and data science. Society has become increasingly reliant on such algorithms for commerce, transportation, healthcare, emergency response, and national security. Despite their critical role in society, algorithms are typically designed and tuned using insight from experts, extensive numerical simulations, and other heuristics. This research develops a more principled understanding and approach to algorithm design that automatically accounts for sensitivity to parameter choice, robustness to noise, and other sources of uncertainty. This approach enables algorithms to be engineered in a way that guarantees performance and safety, which is similar to how airplanes, skyscrapers, and computer hardware are built.Iterative algorithms may be viewed as dynamical systems with feedback. In gradient-based descent methods, for example, gradients are evaluated at each step and used to compute subsequent iterates. By treating algorithms as control systems, this research leverages tools from robust control (specifically: integral quadratic constraints, graphical methods, and semidefinite representation) to analyze and ultimately synthesize a variety of algorithms under different assumptions in an efficient, scalable, and systematic manner. This research also involves collaborative efforts in the areas of graph structure learning of gene regulatory networks and interactive machine learning, which serve to test and validate new algorithm designs.
迭代优化算法是机器学习、计算机视觉和数据科学等现代数据密集型应用的核心。社会越来越依赖这种算法来进行商业,交通,医疗保健,应急响应和国家安全。尽管算法在社会中发挥着关键作用,但它们通常是使用专家的洞察力、广泛的数值模拟和其他数学方法来设计和调整的。这项研究开发了一个更有原则的理解和方法,算法设计,自动占参数选择的敏感性,噪声的鲁棒性,和其他来源的不确定性。这种方法使算法能够以保证性能和安全的方式进行设计,这类似于飞机,摩天大楼和计算机硬件的建造方式。迭代算法可以被视为具有反馈的动力系统。例如,在基于梯度的下降方法中,梯度在每一步都被评估,并用于计算后续的迭代。通过将算法视为控制系统,本研究利用鲁棒控制的工具(具体而言:积分二次约束,图形方法和半定表示),以高效,可扩展和系统的方式在不同的假设下分析并最终合成各种算法。这项研究还涉及基因调控网络的图结构学习和交互式机器学习领域的合作,这些领域用于测试和验证新的算法设计。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Analysis of Optimization Algorithms: A Dissipativity Approach
  • DOI:
    10.1109/mcs.2022.3157115
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Laurent Lessard
  • 通讯作者:
    Laurent Lessard
A Unified Analysis of First-Order Methods for Smooth Games via Integral Quadratic Constraints
  • DOI:
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guodong Zhang;Xuchao Bao;Laurent Lessard;R. Grosse
  • 通讯作者:
    Guodong Zhang;Xuchao Bao;Laurent Lessard;R. Grosse
Absolute Stability via Lifting and Interpolation
通过提升和插值实现绝对稳定性
A Tutorial on a Lyapunov-Based Approach to the Analysis of Iterative Optimization Algorithms
A Tutorial on the Structure of Distributed Optimization Algorithms
分布式优化算法结构教程
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Laurent Lessard其他文献

NUCLEAR FACTOR-κB CYTOPLASMATIC STAINING INTENSITY IS AN INDEPENDENT PREDICTOR OF BIOCHEMICAL RECURRENCE AFTER RADICAL PROSTATECTOMY FOR CLINICALLY LOCALIZED PROSTATE CANCER
  • DOI:
    10.1016/s0022-5347(09)62148-0
  • 发表时间:
    2009-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Hendrik Isbarn;Laurent Lessard;Pierre I Karakiewicz;Thorsten Schlomm;Hartwig Huland;Guido Sauter;Jens Köllermann;Hans Heinzer;Markus Graefen;Fred Saad
  • 通讯作者:
    Fred Saad
1093: NFKB Expression Predicts Biochemical Recurrence in Patients with Positive Margin Prostate Cancer
  • DOI:
    10.1016/s0022-5347(18)38330-7
  • 发表时间:
    2004-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Vincent Fradet;Laurent Lessard;Anne-Marie Mes-Masson;Louis R. Begin;Paul Perrotte;Pierre I. Karakiewicz;Fred Saad
  • 通讯作者:
    Fred Saad
LARGE-SCALE VALIDATION OF NF-kB p65 AS A PROSTATE CANCER PROGNOSTIC MARKER
  • DOI:
    10.1016/s0022-5347(08)62059-5
  • 发表时间:
    2008-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Laurent Lessard;Louis R Begin;Thorsten Schlomm;Jens Kollermenn;Markus Graefen;Pierre I Karakiewicz;Anne-Marie Mes-Masson;Fred Saad
  • 通讯作者:
    Fred Saad
Performance certification of interconnected nonlinear systems using ADMM
使用 ADMM 互连非线性系统的性能认证
Optimal control of a fully decentralized quadratic regulator

Laurent Lessard的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Laurent Lessard', 18)}}的其他基金

A control-theoretic approach to distributed optimization
分布式优化的控制理论方法
  • 批准号:
    2139482
  • 财政年份:
    2021
  • 资助金额:
    $ 46.73万
  • 项目类别:
    Standard Grant
Analysis and design of decentralized control systems in the presence of uncertain latency or system parameters
存在不确定延迟或系统参数的分散控制系统的分析和设计
  • 批准号:
    2136317
  • 财政年份:
    2020
  • 资助金额:
    $ 46.73万
  • 项目类别:
    Standard Grant
A control-theoretic approach to distributed optimization
分布式优化的控制理论方法
  • 批准号:
    1936648
  • 财政年份:
    2019
  • 资助金额:
    $ 46.73万
  • 项目类别:
    Standard Grant
CAREER: Automated Analysis and Design of Optimization Algorithms
职业:优化算法的自动分析和设计
  • 批准号:
    1750162
  • 财政年份:
    2018
  • 资助金额:
    $ 46.73万
  • 项目类别:
    Continuing Grant
CRII: CIF: Universal Analysis of Optimization Algorithms
CRII:CIF:优化算法的通用分析
  • 批准号:
    1656951
  • 财政年份:
    2017
  • 资助金额:
    $ 46.73万
  • 项目类别:
    Standard Grant
Analysis and design of decentralized control systems in the presence of uncertain latency or system parameters
存在不确定延迟或系统参数的分散控制系统的分析和设计
  • 批准号:
    1710892
  • 财政年份:
    2017
  • 资助金额:
    $ 46.73万
  • 项目类别:
    Standard Grant

相似海外基金

Automated analysis of volcano imagery with machine learning techniques
利用机器学习技术自动分析火山图像
  • 批准号:
    2908452
  • 财政年份:
    2024
  • 资助金额:
    $ 46.73万
  • 项目类别:
    Studentship
Automated per-plot leaf-level imaging and analysis for small plot arable field trials
针对小地块耕地试验的自动每地块叶级成像和分析
  • 批准号:
    10060164
  • 财政年份:
    2023
  • 资助金额:
    $ 46.73万
  • 项目类别:
    Collaborative R&D
Toward an automated analysis of bifurcations of dynamical systems
动力系统分岔的自动分析
  • 批准号:
    23K17657
  • 财政年份:
    2023
  • 资助金额:
    $ 46.73万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Customizable Artificial Intelligence for the Biomedical Masses: Development of a User-Friendly Automated Machine Learning Platform for Biology Image Analysis.
面向生物医学大众的可定制人工智能:开发用于生物图像分析的用户友好的自动化机器学习平台。
  • 批准号:
    10699828
  • 财政年份:
    2023
  • 资助金额:
    $ 46.73万
  • 项目类别:
Automated lung sound analysis to improve the clinical diagnosis of pulmonary tuberculosis in children
自动肺音分析提高儿童肺结核的临床诊断
  • 批准号:
    10717389
  • 财政年份:
    2023
  • 资助金额:
    $ 46.73万
  • 项目类别:
Model Based Safety Analysis of Automated Driving Systems project
基于模型的自动驾驶系统安全分析项目
  • 批准号:
    2886377
  • 财政年份:
    2023
  • 资助金额:
    $ 46.73万
  • 项目类别:
    Studentship
Analysis of evolutionary dynamics of ecosystem using automated culture system
利用自动化培养系统分析生态系统的进化动态
  • 批准号:
    23H02471
  • 财政年份:
    2023
  • 资助金额:
    $ 46.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Automated Technoeconomic Analysis for Biomanufacturing Optimisation
生物制造优化的自动化技术经济分析
  • 批准号:
    10075828
  • 财政年份:
    2023
  • 资助金额:
    $ 46.73万
  • 项目类别:
    Grant for R&D
Automated Patch Impact Analysis (PATCH)
自动补丁影响分析 (PATCH)
  • 批准号:
    EP/X040836/1
  • 财政年份:
    2023
  • 资助金额:
    $ 46.73万
  • 项目类别:
    Research Grant
Collaborative Research: SaTC: CORE: Medium: Audacity of Exploration: Toward Automated Discovery of Security Flaws in Networked Systems through Intelligent Documentation Analysis
协作研究:SaTC:核心:中:大胆探索:通过智能文档分析自动发现网络系统中的安全缺陷
  • 批准号:
    2409269
  • 财政年份:
    2023
  • 资助金额:
    $ 46.73万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了