Customizable Artificial Intelligence for the Biomedical Masses: Development of a User-Friendly Automated Machine Learning Platform for Biology Image Analysis.
面向生物医学大众的可定制人工智能:开发用于生物图像分析的用户友好的自动化机器学习平台。
基本信息
- 批准号:10699828
- 负责人:
- 金额:$ 27.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AbbreviationsAlgorithmsArtificial IntelligenceAttentionAutomationBioinformaticsBiologic CharacteristicBiologicalBiological MarkersBiologyBiomedical ResearchCellsCellular MorphologyClinicalCodeCommunitiesComputer Vision SystemsComputer softwareConsumptionCustomDataData SetDetectionDevelopmentEnvironmentEuclidean SpaceEvidence Based MedicineFOS geneFijiGenerationsGoalsHealthcareHumanImageImage AnalysisImaging TechniquesIntuitionLabelLegal patentLibrariesMachine LearningManualsMeasurementMedicalMethodsMicroscopyMinorityModelingMorphologyNeuronsNeurosciencesOpticsPathologistPerformancePhasePlug-inProcessPropertyRecommendationReproducibilityReproducibility of ResultsResearchResearch PersonnelResourcesSamplingScientific InquiryServicesSmall Business Innovation Research GrantSpecificitySpecimenSpeedStandardizationSystemTechnical ExpertiseTechniquesTechnologyTestingTimeTissue SampleTissuesTrainingVariantVisualWorkbiomedical imagingcellular targetingclinical applicationclinical diagnosticscomputer generatedcomputer sciencedata submissiondeep learning modelimprovedinnovationinterestmachine learning modelmicroscopic imagingnovelnovel markerpreventtooltransfer learninguser-friendly
项目摘要
ABSTRACT
Manual analysis of biomedical images by researchers and pathologists is time consuming, requires intensive
training, and is prone to introduce bias and error. Optical analysis of targets within tissue samples, cultures, or
specimens is fundamental to detecting biological properties. Unintentional bias and attentional limitations
during analysis of biomarkers can underlie poor reproducibility of findings in biomedical research and
potentially introduce errors to clinical diagnostics. These problems are significant barriers to delivering the most
beneficial evidence-based medicine, developing effective medical treatments, and promoting public confidence
in scientific inquiry.
Application of computer vision for cellular target detection is a promising approach to reducing human bias,
subjectivity, and errors that limit the reproducibility of research and slow the development of effective medical
treatments. Our image analysis software, called Pipsqueak ProTM, and our underlying artificial intelligence (AI)
technology, have significantly increased inter- and intra-rater reliability of tissue sample analysis and
decreased analysis time for multiplexed biomarkers. Our pre-trained cell detection models identify multiple
cellular morphologies and target types and enable fast, accurate image analysis that greatly exceed human
analysis. While the use of pre-trained deep learning models reduces computational and expertise
requirements, detection accuracy and precision are significantly reduced when analyzing images that deviate
from training parameters.
Here, we propose to develop methods that will dramatically increase accessibility of machine learning
for biomedical image analysis across diverse fields and applications. Our computer vision service will be
made available to research and clinical end-users through our Pipsqueak Pro software and through 3rd party
product integrations. To achieve these goals, we will build on our previous SBIR Phase I & II progress that
developed pre-trained ML models for biomarker detection. We propose to develop a machine learning platform
that is capable of reducing human bias, subjectivity, and errors in biomedical research and healthcare through
a highly-innovative, adaptable “AutoML” system. This patented system will allow users to easily generate
custom computer vision capabilities in a “no-code” environment. The specific innovations proposed here will
improve the accessibility of powerful computer vision techniques for biomedical image analysis, by
democratizing access to machine learning by users who lack expertise in bioinformatics, deep machine
learning, or computer science. The software and tools resulting from the work proposed here will benefit the
development of novel evidence-based medicines and development of effective medical treatments.
摘要
研究人员和病理学家对生物医学图像的手动分析是耗时的,需要密集的
培训,并容易引入偏见和错误。组织样本、培养物或组织中靶点的光学分析
标本是检测生物特性的基础。无意偏见和注意力限制
在生物标志物的分析过程中,可能导致生物医学研究中发现的重现性差,
潜在地将错误引入临床诊断。这些问题是提供最大的
有益的循证医学,开发有效的医疗方法,提高公众信心
在科学探究中。
将计算机视觉应用于细胞目标检测是减少人类偏见的一种有前途的方法,
主观性和错误,限制了研究的可重复性,减缓了有效医疗技术的发展。
治疗。我们的图像分析软件Pipsqueak ProTM和我们的底层人工智能(AI)
技术,显著提高了组织样本分析的评价者间和评价者内的可靠性,
减少多重生物标志物的分析时间。我们的预训练细胞检测模型识别多个
细胞形态和目标类型,并实现快速,准确的图像分析,大大超过人类
分析.虽然使用预先训练的深度学习模型减少了计算和专业知识,
当分析偏离的图像时,
训练参数。
在这里,我们建议开发方法,这将大大提高机器学习的可访问性
用于跨不同领域和应用的生物医学图像分析。我们的计算机视觉服务将
通过我们的Pipsqueak Pro软件和第三方提供给研究和临床最终用户
产品集成。为了实现这些目标,我们将在先前SBIR第一和第二阶段进展的基础上,
开发了用于生物标志物检测的预训练ML模型。我们建议开发一个机器学习平台
能够减少生物医学研究和医疗保健中的人为偏见、主观性和错误,
高度创新、适应性强的“AutoML”系统。这个专利系统将允许用户轻松生成
在“无代码”环境中自定义计算机视觉功能。这里提出的具体创新将
提高强大的计算机视觉技术用于生物医学图像分析的可访问性,
让缺乏生物信息学专业知识的用户民主化地访问机器学习,深度机器学习
学习或计算机科学。从这里提出的工作产生的软件和工具将有利于
开发新的循证药物和开发有效的医疗方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John H Harkness其他文献
John H Harkness的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John H Harkness', 18)}}的其他基金
Development of an adaptive machine learning platform for automated analysis of biomarkers in biomedical images
开发自适应机器学习平台,用于自动分析生物医学图像中的生物标记物
- 批准号:
10483118 - 财政年份:2019
- 资助金额:
$ 27.58万 - 项目类别:
Development of an adaptive machine learning platform for automated analysis of biomarkers in biomedical images
开发自适应机器学习平台,用于自动分析生物医学图像中的生物标记物
- 批准号:
10259501 - 财政年份:2019
- 资助金额:
$ 27.58万 - 项目类别:
相似海外基金
CAREER: CAS-Climate: Forecast-informed Flexible Reservoir System Modeling Enabled by Artificial Intelligence Algorithms Using Subseasonal-to-Seasonal Hydroclimatological Forecasts
职业:CAS-气候:利用次季节到季节水文气候预测的人工智能算法实现基于预测的灵活水库系统建模
- 批准号:
2236926 - 财政年份:2023
- 资助金额:
$ 27.58万 - 项目类别:
Continuing Grant
Artificial intelligence algorithms to predict risk of injury in racehorses.
预测赛马受伤风险的人工智能算法。
- 批准号:
LP210200798 - 财政年份:2023
- 资助金额:
$ 27.58万 - 项目类别:
Linkage Projects
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221742 - 财政年份:2022
- 资助金额:
$ 27.58万 - 项目类别:
Standard Grant
Performance-Based Earthquake Engineering 2.0: Machine-Learning and Artificial Intelligence Algorithms for seismic hazard and vulnerability.
基于性能的地震工程 2.0:地震灾害和脆弱性的机器学习和人工智能算法。
- 批准号:
2765246 - 财政年份:2022
- 资助金额:
$ 27.58万 - 项目类别:
Studentship
The 'risk of risk': remodelling artificial intelligence algorithms for predicting child abuse.
“风险中的风险”:重塑人工智能算法以预测虐待儿童行为。
- 批准号:
ES/R00983X/2 - 财政年份:2022
- 资助金额:
$ 27.58万 - 项目类别:
Research Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221741 - 财政年份:2022
- 资助金额:
$ 27.58万 - 项目类别:
Standard Grant
Developing a platform for deep phenotyping of heart failure with preserved ejection fraction using raw, widely-available, multi-modality data and artificial intelligence algorithms
使用原始、广泛可用的多模态数据和人工智能算法,开发一个对射血分数保留的心力衰竭进行深度表型分析的平台
- 批准号:
10683803 - 财政年份:2022
- 资助金额:
$ 27.58万 - 项目类别:
Early-assymptomatic-dementia prediction based on a white-matter biomarker using Artificial Intelligence algorithms
使用人工智能算法基于白质生物标志物的早期无症状痴呆症预测
- 批准号:
460558 - 财政年份:2022
- 资助金额:
$ 27.58万 - 项目类别:
Concluding 50 Years of Research in Wireless Communications: Algorithms for Artificial Intelligence and Optimization in Networks Beyond 5G and Thereafter
总结无线通信 50 年的研究:5G 及以后网络中的人工智能和优化算法
- 批准号:
RGPIN-2022-04417 - 财政年份:2022
- 资助金额:
$ 27.58万 - 项目类别:
Discovery Grants Program - Individual
De novo development of small CRISPR-Cas proteins using artificial intelligence algorithms
使用人工智能算法从头开发小型 CRISPR-Cas 蛋白
- 批准号:
10544772 - 财政年份:2022
- 资助金额:
$ 27.58万 - 项目类别: