Mesoscale to Microscale Coupling Using Continuous Eddy Simulation

使用连续涡流模拟进行中尺度到微观尺度的耦合

基本信息

  • 批准号:
    2137351
  • 负责人:
  • 金额:
    $ 32.48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-01-01 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

Atmospheric numerical modeling simulations are based on techniques that are most relevant to the scales that are being simulated. Models that are built to study wind flow through urban buildings use a different methodology as ones that simulate weather at continental scales. It has been a standing challenge in the field on how to bridge these scales. This project takes research that has been conducted in the engineering discipline and applies it to atmospheric modeling, with a goal of better simulating the motions closest to the Earth’s surface. The work has particular relevance to wind energy production, but also to weather forecasting in general. A postdoctoral research scientist will play a large role in the project, thereby providing training for the next generation of scientists.This project is for the application of a newly-developed mathematical method to the “Terra-Incognita” problem of coupling mesoscale and microscale atmospheric models. The Continuous Eddy Simulation (CES) method was developed for engineering problems that span the Reynolds-averaged Navier Stokes (RANS) and Large Eddy Simulation (LES) modes. In meteorology, this relates to the difficulty in running models on simulations at intermediate grid spacing, where there are inconsistencies between equations and the scaling of characteristic time and length scales. CES is able to stably respond to changing conditions as implied by grid and Reynolds number variations. The work plan is focused on two tasks with subprojects:1. Implement CES as a microscale model in the Weather Research and Forecasting (WRF) model environment. The integration will need to demonstrate the ability to correctly cover almost RANS and almost resolving LES regimes, and consistently redistribute resolved and modeled modes in response to grid variations. CES-WRF will be validated using an existing LES simulation. CES-WRF will also be used to validate the Townsend Eddy Theory (TET), which is a recently developed conceptual model for the structure of wall-bounded turbulent flows.2. Validate CES as mesoscale WRF. CES-Microscale/Mesoscale (MIME) will be evaluated for a wide range of domain sizes and coarse grids to verify the functioning of the CES mode redistribution mechanism. A variety of coupling cases will be studied.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大气数值模拟模拟基于与所模拟的尺度最为相关的技术。用于研究城市建筑中风的模型与用于模拟大陆尺度天气的模型使用的方法不同。如何跨越这些尺度一直是该领域的一个长期挑战。该项目采用了工程学科的研究成果,并将其应用于大气建模,目的是更好地模拟最接近地球表面的运动。这项工作与风能生产特别相关,但也与一般的天气预报有关。博士后研究科学家将在该项目中发挥重要作用,从而为下一代科学家提供培训。本项目是将一种新开发的数学方法应用于中尺度和微尺度大气模式耦合的“未知地”问题。针对雷诺平均纳维-斯托克斯(RANS)和大涡模拟(LES)模式的工程问题,提出了连续涡模拟(CES)方法。在气象学中,这涉及到在中等网格间距的模拟中运行模型的困难,其中方程与特征时间和长度尺度的缩放之间存在不一致。CES能够稳定地响应网格和雷诺数变化所暗示的变化条件。工作计划的重点是两个任务和子项目:1。在天气研究与预报(WRF)模式环境中将CES作为一个微观模型来实现。集成将需要展示正确覆盖几乎所有ran和几乎所有可解析LES制度的能力,并根据网格变化一致地重新分配已解析和建模的模式。CES-WRF将使用现有的LES模拟进行验证。CES-WRF还将用于验证汤森德涡流理论(TET),这是最近发展起来的壁面湍流结构的概念模型。验证CES为中尺度WRF。CES- microscale /Mesoscale (MIME)将在大范围的域大小和粗网格中进行评估,以验证CES模式再分配机制的功能。将研究各种耦合情况。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
From Two-Equation Turbulence Models to Minimal Error Resolving Simulation Methods for Complex Turbulent Flows
  • DOI:
    10.3390/fluids7120368
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    S. Heinz
  • 通讯作者:
    S. Heinz
Minimal error partially resolving simulation methods for turbulent flows: A dynamic machine learning approach
湍流的最小误差部分解析模拟方法:动态机器学习方法
  • DOI:
    10.1063/5.0095592
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Heinz, Stefan
  • 通讯作者:
    Heinz, Stefan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stefan Heinz其他文献

The Asymptotic Structure of Canonical Wall-Bounded Turbulent Flows
典型壁界湍流的渐近结构
  • DOI:
    10.3390/fluids9010025
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Stefan Heinz
  • 通讯作者:
    Stefan Heinz
純チタンの疲労特性改善を目的とした低温窒化プロセスの開発
开发提高纯钛疲劳性能的低温氮化工艺
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shoichi Kikuchi;Stefan Heinz;Dietmar Eifler;Yuta Nakamura and Akira Ueno;今泉潤哉,市川拓人,來海博央;中村悠太,菊池将一,吉田翔,竹村浩太郎,上野明,飴山惠;今泉潤哉,市川拓人,鈴木隆浩,來海博央;角田恭兵,今泉潤哉,藤井琢士,來海博央;菊池将一,西本泰介,中村悠太,上野 明,瀬尾卓弘,関口達也,飴山 惠
  • 通讯作者:
    菊池将一,西本泰介,中村悠太,上野 明,瀬尾卓弘,関口達也,飴山 惠
Using dual presolving reductions to reformulate cumulative constraints
使用双重预求解约简重新表述累积约束
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Stefan Heinz;J. Schulz;J. Christopher Beck
  • 通讯作者:
    J. Christopher Beck
Theory-based mesoscale to microscale coupling for wind energy applications
  • DOI:
    10.1016/j.apm.2021.05.020
  • 发表时间:
    2021-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Stefan Heinz
  • 通讯作者:
    Stefan Heinz
メカニカルミリングを施した純チタン粉末焼結体の低温プラズマ窒化挙動
机械研磨纯钛粉末烧结体的低温等离子渗氮行为
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shoichi Kikuchi;Stefan Heinz;Dietmar Eifler;Yuta Nakamura and Akira Ueno;今泉潤哉,市川拓人,來海博央;中村悠太,菊池将一,吉田翔,竹村浩太郎,上野明,飴山惠;今泉潤哉,市川拓人,鈴木隆浩,來海博央;角田恭兵,今泉潤哉,藤井琢士,來海博央;菊池将一,西本泰介,中村悠太,上野 明,瀬尾卓弘,関口達也,飴山 惠;中村悠太,菊池将一,西本泰介,上野 明,瀬尾卓弘,関口達也,飴山 惠
  • 通讯作者:
    中村悠太,菊池将一,西本泰介,上野 明,瀬尾卓弘,関口達也,飴山 惠

Stefan Heinz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stefan Heinz', 18)}}的其他基金

Mathematical Foundations of Future Turbulent Flow Simulations
未来湍流模拟的数学基础
  • 批准号:
    1622488
  • 财政年份:
    2016
  • 资助金额:
    $ 32.48万
  • 项目类别:
    Continuing Grant

相似海外基金

Microscale radiography of hydrodynamic instabilities mitigation in magnetized high-density laser plasmas
磁化高密度激光等离子体中流体动力学不稳定性缓解的微尺度射线照相
  • 批准号:
    24K06988
  • 财政年份:
    2024
  • 资助金额:
    $ 32.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Design new-generation microscale thermoelectric device
设计新一代微型热电器件
  • 批准号:
    DE240101170
  • 财政年份:
    2024
  • 资助金额:
    $ 32.48万
  • 项目类别:
    Discovery Early Career Researcher Award
Multi-Scale Experimental and Computational Investigation of Microscale Origins of Ductile Failure
延性破坏微观起源的多尺度实验和计算研究
  • 批准号:
    2334678
  • 财政年份:
    2024
  • 资助金额:
    $ 32.48万
  • 项目类别:
    Standard Grant
Highly efficient microscale liquid handling and bio interfacing
高效的微量液体处理和生物界面
  • 批准号:
    FL230100023
  • 财政年份:
    2024
  • 资助金额:
    $ 32.48万
  • 项目类别:
    Australian Laureate Fellowships
Innovation of stimulus electrodes based on macro-microscale multiresolution surface control
基于宏观微观多分辨率表面控制的刺激电极创新
  • 批准号:
    23K19217
  • 财政年份:
    2023
  • 资助金额:
    $ 32.48万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Microscale enabled advanced flow and heat transfer technologies featuring high performance and low power consumption; Acronym: Micro-FloTec
微尺度实现了高性能、低功耗的先进流动和传热技术;
  • 批准号:
    EP/Y004973/1
  • 财政年份:
    2023
  • 资助金额:
    $ 32.48万
  • 项目类别:
    Research Grant
Development and Promotion of Teaching Materials for Inquiry Learning in Collaboration with Programming Education for Microscale Experiments
与微型实验编程教育合作的探究性学习教材的开发与推广
  • 批准号:
    23K02764
  • 财政年份:
    2023
  • 资助金额:
    $ 32.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Evaluation of novel microscale cell culture platform for translational drug development in prostate cancer
用于前列腺癌转化药物开发的新型微型细胞培养平台的评估
  • 批准号:
    10588604
  • 财政年份:
    2023
  • 资助金额:
    $ 32.48万
  • 项目类别:
Understanding Chirality at Cell-Cell Junctions With Microscale Platforms
利用微型平台了解细胞与细胞连接处的手性
  • 批准号:
    10587627
  • 财政年份:
    2023
  • 资助金额:
    $ 32.48万
  • 项目类别:
Microscale Radionuclide S-values for αRPT
αRPT 的微量放射性核素 S 值
  • 批准号:
    10713711
  • 财政年份:
    2023
  • 资助金额:
    $ 32.48万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了