Homogenization Methods in Statistical Physics

统计物理中的均质化方法

基本信息

  • 批准号:
    2137909
  • 负责人:
  • 金额:
    $ 31.36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

In the physics and engineering of composite materials, it is natural to use models based on partial differential equations with highly oscillatory coefficients. The mathematical theory of homogenization was formed to answer the large class of analytic questions that arise from studying such equations. The general subject area has seen tremendous progress in the last ten years. However, despite the many past advances, some basic and fundamental phenomena still elude rigorous mathematical analysis. The principal investigator (PI) will develop new techniques and new perspectives for some of these remaining problems, with a focus on problems in statistical physics that can be viewed through the lens of homogenization. This includes models of semiconductors, fluid mixing, and droplet formation on rough surfaces. The project provides research training opportunities for graduate students. The PI will apply techniques from analysis and probability to study problems in statistical physics. The main focus will be on the large scale behavior of solutions of partial differential equations with highly oscillatory coefficients. This will include heat and wave equations with random coefficients as well as their lattice discretizations and related free boundary problems. Many of the proposed projects are inspired by Anderson localization phenomena. Another unifying theme is homogenization, where rough microscopic structure “averages” over large scales and gives rise to non-trivial smooth macroscopic effects. The primary goal is to obtain both qualitative and quantitative estimates for the large-scale behavior of solutions. The PI will utilize recent advances in homogenization and large scale regularity theory in order to attack a number of open problems. The primary areas of interest are Anderson localization, the Abelian sandpile, particle models for fluids, the mixing of fluids, and droplet formation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在复合材料的物理和工程中,使用基于具有高振荡系数的偏微分方程的模型是很自然的。数学的均匀化理论的形成是为了回答从研究这类方程中产生的一大类分析问题。在过去的十年里,一般学科领域取得了巨大的进步。然而,尽管过去取得了许多进展,但一些基本和根本现象仍然无法进行严格的数学分析。首席研究员(PI)将为其中一些剩余问题开发新技术和新视角,重点关注可以通过均匀化透镜观察的统计物理学问题。这包括半导体、流体混合和粗糙表面上液滴形成的模型。该项目为研究生提供研究培训机会。PI将应用分析和概率的技术来研究统计物理学中的问题。主要的焦点将放在具有高振荡系数的偏微分方程解的大尺度行为上。这将包括热和波动方程的随机系数,以及他们的晶格离散和相关的自由边界问题。许多被提议的项目的灵感来自于安德森本地化现象。另一个统一的主题是均匀化,其中粗糙的微观结构在大尺度上“平均”,并产生非平凡的光滑宏观效应。主要目标是获得定性和定量估计的大规模行为的解决方案。PI将利用最近的进展,在均匀化和大规模的规律性理论,以攻击一些开放的问题。主要感兴趣的领域是安德森定位、阿贝尔沙堆、流体颗粒模型、流体混合和液滴形成。该奖项反映了NSF的法定使命,并且通过使用基金会的知识价值和更广泛的影响进行评估,被认为值得支持。审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Charles Smart其他文献

PO-646-01 HIGHLY REACTIVE ISOLEVUGLANDINS MEDIATE CYTOKINE-INDUCED ELECTRICAL REMODELING TO PROMOTE ATRIAL FIBRILLATION
  • DOI:
    10.1016/j.hrthm.2022.03.190
  • 发表时间:
    2022-05-01
  • 期刊:
  • 影响因子:
    5.700
  • 作者:
    Matthew Murphy;Zhenjiang Yang;Tuerdi Subati;Kaylen Woodall;Justin Van Beusecum;Charles Smart;Ashley Pitzer;Annet Kirabo;Meena Madhur;Joey Barnett;Dan M. Roden;Katherine T. Murray
  • 通讯作者:
    Katherine T. Murray
Fossil mammals and artefacts from the Middle Awash Valley, Ethiopia
来自埃塞俄比亚阿瓦什中谷的化石哺乳动物和人工制品
  • DOI:
    10.1038/298025a0
  • 发表时间:
    1982-07-01
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Jon E. Kalb;C. J. Jolly;Assefa Mebrate;Sleshi Tebedge;Charles Smart;E. B. Oswald;Douglas Cramer;Paul Whitehead;C. B. Wood;G. C. Conroy;Tsrha Adefris;Louise Sperling;Berhane Kana
  • 通讯作者:
    Berhane Kana

Charles Smart的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Charles Smart', 18)}}的其他基金

Homogenization Methods in Statistical Physics
统计物理中的均质化方法
  • 批准号:
    2055226
  • 财政年份:
    2021
  • 资助金额:
    $ 31.36万
  • 项目类别:
    Standard Grant
Scaling Limits via Stochastic Homogenization
通过随机均质化缩放限制
  • 批准号:
    1712841
  • 财政年份:
    2017
  • 资助金额:
    $ 31.36万
  • 项目类别:
    Standard Grant
Scaling limits of random and deterministic diffusion processes on the integer lattice
整数晶格上随机和确定性扩散过程的尺度限制
  • 批准号:
    1606670
  • 财政年份:
    2015
  • 资助金额:
    $ 31.36万
  • 项目类别:
    Standard Grant
Scaling limits of random and deterministic diffusion processes on the integer lattice
整数晶格上随机和确定性扩散过程的尺度限制
  • 批准号:
    1407331
  • 财政年份:
    2014
  • 资助金额:
    $ 31.36万
  • 项目类别:
    Standard Grant
Scaling limits of random and deterministic diffusion processes on the integer lattice
整数晶格上随机和确定性扩散过程的尺度限制
  • 批准号:
    1461988
  • 财政年份:
    2014
  • 资助金额:
    $ 31.36万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    1004595
  • 财政年份:
    2010
  • 资助金额:
    $ 31.36万
  • 项目类别:
    Fellowship Award
A New Technology for Forecasting Intermittent Demand in Manufacturing
预测制造业间歇性需求的新技术
  • 批准号:
    9204101
  • 财政年份:
    1993
  • 资助金额:
    $ 31.36万
  • 项目类别:
    Standard Grant
Forecasting Fluctuating Demand in Manufacturing
预测制造业需求波动
  • 批准号:
    9060759
  • 财政年份:
    1991
  • 资助金额:
    $ 31.36万
  • 项目类别:
    Standard Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Practical guidance on accessible statistical methods for different estimands in randomised trials
随机试验中不同估计值的可用统计方法的实用指南
  • 批准号:
    MR/Z503770/1
  • 财政年份:
    2024
  • 资助金额:
    $ 31.36万
  • 项目类别:
    Research Grant
CAREER: Next-Generation Methods for Statistical Integration of High-Dimensional Disparate Data Sources
职业:高维不同数据源统计集成的下一代方法
  • 批准号:
    2422478
  • 财政年份:
    2024
  • 资助金额:
    $ 31.36万
  • 项目类别:
    Continuing Grant
Modern statistical methods for clustering community ecology data
群落生态数据聚类的现代统计方法
  • 批准号:
    DP240100143
  • 财政年份:
    2024
  • 资助金额:
    $ 31.36万
  • 项目类别:
    Discovery Projects
CAREER: Statistical Inference in Observational Studies -- Theory, Methods, and Beyond
职业:观察研究中的统计推断——理论、方法及其他
  • 批准号:
    2338760
  • 财政年份:
    2024
  • 资助金额:
    $ 31.36万
  • 项目类别:
    Continuing Grant
Developing statistical methods for structural change analysis using panel data
使用面板数据开发结构变化分析的统计方法
  • 批准号:
    24K16343
  • 财政年份:
    2024
  • 资助金额:
    $ 31.36万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: Enabling Hybrid Methods in the NIMBLE Hierarchical Statistical Modeling Platform
协作研究:在 NIMBLE 分层统计建模平台中启用混合方法
  • 批准号:
    2332442
  • 财政年份:
    2023
  • 资助金额:
    $ 31.36万
  • 项目类别:
    Standard Grant
Statistical and Psychometric Methods for Measuring the Extent to Which Culturally Responsive Assessments Reduce Cultural Bias
用于衡量文化响应评估减少文化偏见程度的统计和心理测量方法
  • 批准号:
    2243041
  • 财政年份:
    2023
  • 资助金额:
    $ 31.36万
  • 项目类别:
    Standard Grant
Statistical Models and Methods for Complex Data in Metric Spaces
度量空间中复杂数据的统计模型和方法
  • 批准号:
    2310450
  • 财政年份:
    2023
  • 资助金额:
    $ 31.36万
  • 项目类别:
    Standard Grant
CAREER: Practical algorithms and high dimensional statistical methods for multimodal haplotype modelling
职业:多模态单倍型建模的实用算法和高维统计方法
  • 批准号:
    2239870
  • 财政年份:
    2023
  • 资助金额:
    $ 31.36万
  • 项目类别:
    Standard Grant
Deepening and Expanding Research for Efficient Methods of Function Estimation in High Dimensional Statistical Analysis
高维统计分析中高效函数估计方法的深化和拓展研究
  • 批准号:
    23H03353
  • 财政年份:
    2023
  • 资助金额:
    $ 31.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了