NSF Convergence Accelerator Track E: Ocean Vision AI: Scaling up Visual Observations of Life in the Ocean Using Artificial Intelligence

NSF 融合加速器轨道 E:海洋视觉 AI:利用人工智能扩大对海洋生命的视觉观察

基本信息

  • 批准号:
    2137977
  • 负责人:
  • 金额:
    $ 74.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2023-09-30
  • 项目状态:
    已结题

项目摘要

OIA - 2137977 NSF Convergence Accelerator Track E: Ocean Vision AI: Scaling up visual observations of life in the ocean using artificial intelligenceAbstractThis project will scale up society’s observational capabilities to fully explore the ocean and discover the full spectrum of animals that live there. The ocean represents the largest habitable ecosystem on the planet, yet less than 5% of that volume has been explored, and nearly 50% of marine life are yet to be described. To close this gap, underwater imaging, a major sensing modality for marine biology, is being deployed on a diverse array of platforms. However, as more visual data are collected, the community faces a data analysis backlog. This project, Ocean Vision AI, will deploy artificial intelligence (AI) and machine learning to address this backlog by automating underwater image and video analysis. The research activities include contributions from the research community as well as the general public, video game players, and advanced high school and community college students. Together, Ocean Vision AI will be used to directly accelerate the automated analysis of underwater visual data to enable scientists, explorers, policymakers, storytellers, and the public, to learn, understand, and care more about the life that inhabits the oceans.The research team will engage researchers and innovators across numerous sectors (e.g., academic, government, non-profit, for-profit) to advance society’s observational capabilities of marine life. Ocean Vision AI (artificial intelligence) aims to provide a central hub for incubating groups conducting research that use imaging, AI, open data, and hardware/software; create data pipelines from existing image and video data repositories; and provide project tools for coordination. In addition, Ocean Vision AI will leverage public participation and engagement via game development, and will result in data products that are shared with researchers as well as other US and global open data repositories. This research will facilitate large-scale, spatiotemporal surveys of underwater communities, geomorphology, and marine debris, and accelerate the discovery of marine life by making well classified images widely available to experts using taxonomic metadata standards. Moreover, this project will be able to coordinate and scale underwater computer vision research and machine learning algorithm development via novel training data through the FathomNet database. This project will ultimately enable innovative intellectual pursuits in fields as diverse as marine biology, fisheries, biological oceanography, underwater optics and computer vision, artificial intelligence, ocean engineering, biomechanics, environmental biology, human-computer interaction, game-based education, and community contributions to science.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
OIA - 2137977 NSF Convergence Accelerator Track E:Ocean Vision AI:Scaling up visual observations of life in the ocean using artificial intelligence这个项目将扩大社会的观测能力,以充分探索海洋,并发现生活在那里的所有动物。海洋是地球上最大的可居住生态系统,但只有不到5%的海洋被探索,近50%的海洋生物尚未被描述。为了缩小这一差距,水下成像,海洋生物学的一个主要传感模式,正在部署在各种各样的平台。然而,随着越来越多的可视化数据被收集,社区面临着数据分析积压。这个名为Ocean Vision AI的项目将部署人工智能(AI)和机器学习,通过自动化水下图像和视频分析来解决这一积压问题。研究活动包括来自研究社区以及公众,视频游戏玩家,高级高中和社区大学学生的贡献。Ocean Vision AI将用于直接加速水下视觉数据的自动化分析,使科学家,探险家,政策制定者,讲故事的人和公众能够学习,理解和关心栖息在海洋中的生命。研究团队将吸引众多领域的研究人员和创新者(例如,学术、政府、非营利、营利),以提高社会对海洋生物的观测能力。Ocean Vision AI(人工智能)旨在为孵化团队提供一个中心枢纽,这些团队使用成像,人工智能,开放数据和硬件/软件进行研究;从现有的图像和视频数据存储库创建数据管道;并提供项目协调工具。此外,Ocean Vision AI将通过游戏开发利用公众参与和参与,并将产生与研究人员以及其他美国和全球开放数据库共享的数据产品。这项研究将促进对水下群落、地貌和海洋废弃物的大规模时空调查,并通过使用分类元数据标准向专家广泛提供分类良好的图像,加快海洋生物的发现。此外,该项目将能够通过FathomNet数据库的新训练数据来协调和扩展水下计算机视觉研究和机器学习算法开发。该项目最终将在海洋生物学、渔业、生物海洋学、水下光学和计算机视觉、人工智能、海洋工程、生物力学、环境生物学、人机交互、基于游戏的教育、该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的学术价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kakani Young其他文献

Kakani Young的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kakani Young', 18)}}的其他基金

NSF Convergence Accelerator Track E: Ocean Vision AI: Scaling up visual observations of life in the ocean using artificial intelligence
NSF 融合加速器轨道 E:海洋视觉 AI:利用人工智能扩大对海洋生命的视觉观察
  • 批准号:
    2230776
  • 财政年份:
    2022
  • 资助金额:
    $ 74.72万
  • 项目类别:
    Cooperative Agreement
Collaborative Research: Functional design of siphonophore propulsion and behavior
合作研究:管水器推进和行为的功能设计
  • 批准号:
    2114170
  • 财政年份:
    2021
  • 资助金额:
    $ 74.72万
  • 项目类别:
    Standard Grant
EAGER - Integrating machine learning on autonomous platforms for target-tracking operations using stereo imagery
EAGER - 将机器学习集成到自主平台上,使用立体图像进行目标跟踪操作
  • 批准号:
    1812535
  • 财政年份:
    2018
  • 资助金额:
    $ 74.72万
  • 项目类别:
    Standard Grant
Collaborative Research: Mesobot: a robot for investigating the ocean interior
合作研究:Mesobot:用于调查海洋内部的机器人
  • 批准号:
    1636527
  • 财政年份:
    2017
  • 资助金额:
    $ 74.72万
  • 项目类别:
    Continuing Grant
Collaborative Research: IDBR: Type A: A High-resolution Bio-Sensor to Simultaneously Measure the Behavior, Vital Rates, and Environment of Key Marine Organisms
合作研究:IDBR:A 型:高分辨率生物传感器,可同时测量主要海洋生物的行为、生命率和环境
  • 批准号:
    1455501
  • 财政年份:
    2015
  • 资助金额:
    $ 74.72万
  • 项目类别:
    Continuing Grant

相似海外基金

NSF Convergence Accelerator Track L: HEADLINE - HEAlth Diagnostic eLectronIc NosE
NSF 融合加速器轨道 L:标题 - 健康诊断电子 NosE
  • 批准号:
    2343806
  • 财政年份:
    2024
  • 资助金额:
    $ 74.72万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator track L: Translating insect olfaction principles into practical and robust chemical sensing platforms
NSF 融合加速器轨道 L:将昆虫嗅觉原理转化为实用且强大的化学传感平台
  • 批准号:
    2344284
  • 财政年份:
    2024
  • 资助金额:
    $ 74.72万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track K: Unraveling the Benefits, Costs, and Equity of Tree Coverage in Desert Cities
NSF 融合加速器轨道 K:揭示沙漠城市树木覆盖的效益、成本和公平性
  • 批准号:
    2344472
  • 财政年份:
    2024
  • 资助金额:
    $ 74.72万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track L: Smartphone Time-Resolved Luminescence Imaging and Detection (STRIDE) for Point-of-Care Diagnostics
NSF 融合加速器轨道 L:用于即时诊断的智能手机时间分辨发光成像和检测 (STRIDE)
  • 批准号:
    2344476
  • 财政年份:
    2024
  • 资助金额:
    $ 74.72万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track L: Intelligent Nature-inspired Olfactory Sensors Engineered to Sniff (iNOSES)
NSF 融合加速器轨道 L:受自然启发的智能嗅觉传感器,专为嗅探而设计 (iNOSES)
  • 批准号:
    2344256
  • 财政年份:
    2024
  • 资助金额:
    $ 74.72万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track K: COMPASS: Comprehensive Prediction, Assessment, and Equitable Solutions for Storm-Induced Contamination of Freshwater Systems
NSF 融合加速器轨道 K:COMPASS:风暴引起的淡水系统污染的综合预测、评估和公平解决方案
  • 批准号:
    2344357
  • 财政年份:
    2024
  • 资助金额:
    $ 74.72万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track M: Water-responsive Materials for Evaporation Energy Harvesting
NSF 收敛加速器轨道 M:用于蒸发能量收集的水响应材料
  • 批准号:
    2344305
  • 财政年份:
    2024
  • 资助金额:
    $ 74.72万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator (L): Innovative approach to monitor methane emissions from livestock using an advanced gravimetric microsensor.
NSF Convergence Accelerator (L):使用先进的重力微传感器监测牲畜甲烷排放的创新方法。
  • 批准号:
    2344426
  • 财政年份:
    2024
  • 资助金额:
    $ 74.72万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator, Track K: Mapping the nation's wetlands for equitable water quality, monitoring, conservation, and policy development
NSF 融合加速器,K 轨道:绘制全国湿地地图,以实现公平的水质、监测、保护和政策制定
  • 批准号:
    2344174
  • 财政年份:
    2024
  • 资助金额:
    $ 74.72万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track M: A new biomanufacturing process for making precipitated calcium carbonate and plant-based compounds that support human health
NSF Convergence Accelerator Track M:一种新的生物制造工艺,用于制造支持人类健康的沉淀碳酸钙和植物基化合物
  • 批准号:
    2344228
  • 财政年份:
    2024
  • 资助金额:
    $ 74.72万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了