EAGER - Integrating machine learning on autonomous platforms for target-tracking operations using stereo imagery
EAGER - 将机器学习集成到自主平台上,使用立体图像进行目标跟踪操作
基本信息
- 批准号:1812535
- 负责人:
- 金额:$ 26.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The ocean's midwaters (depths from 200 to 1000 meters where sunlight is dim) are increasingly becoming an area of interest for scientific discovery and study. Efforts to further explore this vast and incredibly important region in the ocean involves the development of small, nimble, autonomous underwater vehicles (AUVs) that can be used for a variety of missions. This proposal will use a large database in video images collected over 25 years to train the vehicle to identify and track targets in real-time using a pair of stereo cameras. This project will involve a Postdoctoral Researcher who will be mentored by collaborators at MBARI and Stanford, who are pioneers in applying machine learning algorithms to underwater imagery. Results of this effort will be disseminated via conferences, publications, and outreach through industry and media partners. Media programs at MBARI and National Geographic Society will produce YouTube videos and social media posts detailing the efforts, the project's personnel, methods, and discoveries.The ocean's midwaters represent the largest ecosystem on earth with unique inhabitants and processes that link the surface waters to the seafloor. Efforts to further explore this vast and incredibly important region in the ocean involves development of AUVs that can be used for a variety of missions (e.g., transecting, tracking, fluid sampling). One of the key vehicle missions for these autonomous vehicles is to track targets in real-time. The tracking missions can be used for science questions as diverse as rates of marine snow sinking and its impact on biogeochemical cycling, the fate of rising methane from the benthos, and direct observations of organismal behavior to address their ecology and biomechanics. In order to conduct these tracking missions, robust algorithms are needed to identify and track targets as they change shape and state in realtime.
海洋的中层水域(深度从200米到1000米,阳光暗淡)越来越成为科学发现和研究的兴趣领域。为了进一步探索这一巨大而极其重要的海洋区域,需要开发可用于各种任务的小型、灵活的自主水下航行器(AUV)。该提案将使用25年来收集的视频图像中的大型数据库来训练车辆使用一对立体摄像机实时识别和跟踪目标。该项目将涉及一名博士后研究员,他将由MBARI和斯坦福大学的合作者指导,他们是将机器学习算法应用于水下图像的先驱。这一努力的成果将通过会议、出版物以及行业和媒体伙伴的外联活动加以传播。MBARI和国家地理学会的媒体计划将制作YouTube视频和社交媒体帖子,详细介绍项目的工作,人员,方法和发现。海洋的中间沃茨代表了地球上最大的生态系统,拥有独特的居民和连接表面沃茨和海底的过程。进一步探索海洋中这一广阔而极其重要的区域的努力涉及到可用于各种任务的AUV的开发(例如,横切、跟踪、流体取样)。这些自动驾驶车辆的关键任务之一是实时跟踪目标。跟踪任务可用于各种科学问题,如海洋积雪沉降率及其对生物地球化学循环的影响,底栖生物中甲烷上升的命运,以及直接观察生物行为以解决其生态学和生物力学问题。为了执行这些跟踪任务,需要鲁棒的算法来实时识别和跟踪改变形状和状态的目标。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Visual tracking of deepwater animals using machine learning-controlled robotic underwater vehicles
- DOI:10.1109/wacv48630.2021.00090
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:K. Katija;P. Roberts;Joost Daniels;Alexander M. Lapides;K. Barnard;M. Risi;Ben Y Ranaan;Benjamin Woodward;Jonathan Takahashi
- 通讯作者:K. Katija;P. Roberts;Joost Daniels;Alexander M. Lapides;K. Barnard;M. Risi;Ben Y Ranaan;Benjamin Woodward;Jonathan Takahashi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kakani Young其他文献
Kakani Young的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kakani Young', 18)}}的其他基金
NSF Convergence Accelerator Track E: Ocean Vision AI: Scaling up visual observations of life in the ocean using artificial intelligence
NSF 融合加速器轨道 E:海洋视觉 AI:利用人工智能扩大对海洋生命的视觉观察
- 批准号:
2230776 - 财政年份:2022
- 资助金额:
$ 26.92万 - 项目类别:
Cooperative Agreement
NSF Convergence Accelerator Track E: Ocean Vision AI: Scaling up Visual Observations of Life in the Ocean Using Artificial Intelligence
NSF 融合加速器轨道 E:海洋视觉 AI:利用人工智能扩大对海洋生命的视觉观察
- 批准号:
2137977 - 财政年份:2021
- 资助金额:
$ 26.92万 - 项目类别:
Standard Grant
Collaborative Research: Functional design of siphonophore propulsion and behavior
合作研究:管水器推进和行为的功能设计
- 批准号:
2114170 - 财政年份:2021
- 资助金额:
$ 26.92万 - 项目类别:
Standard Grant
Collaborative Research: Mesobot: a robot for investigating the ocean interior
合作研究:Mesobot:用于调查海洋内部的机器人
- 批准号:
1636527 - 财政年份:2017
- 资助金额:
$ 26.92万 - 项目类别:
Continuing Grant
Collaborative Research: IDBR: Type A: A High-resolution Bio-Sensor to Simultaneously Measure the Behavior, Vital Rates, and Environment of Key Marine Organisms
合作研究:IDBR:A 型:高分辨率生物传感器,可同时测量主要海洋生物的行为、生命率和环境
- 批准号:
1455501 - 财政年份:2015
- 资助金额:
$ 26.92万 - 项目类别:
Continuing Grant
相似海外基金
Toxicology-testing platform integrating immunocompetent in vitro/ex vivo modules with real-time sensing and machine learning based in silico models for life cycle assessment and SSbD
毒理学测试平台,将免疫活性体外/离体模块与基于硅模型的实时传感和机器学习相结合,用于生命周期评估和 SSbD
- 批准号:
10100967 - 财政年份:2024
- 资助金额:
$ 26.92万 - 项目类别:
EU-Funded
CAREER: Integrating Graph Theory based Networks with Machine Learning for Enhanced Process Synthesis and Design
职业:将基于图论的网络与机器学习相集成以增强流程综合和设计
- 批准号:
2339588 - 财政年份:2024
- 资助金额:
$ 26.92万 - 项目类别:
Continuing Grant
III: Medium: Collaborative Research: Integrating Large-Scale Machine Learning and Edge Computing for Collaborative Autonomous Vehicles
III:媒介:协作研究:集成大规模机器学习和边缘计算以实现协作自动驾驶汽车
- 批准号:
2348169 - 财政年份:2023
- 资助金额:
$ 26.92万 - 项目类别:
Continuing Grant
BRAIN CONNECTS: PatchLink, scalable tools for integrating connectomes, projectomes, and transcriptomes
大脑连接:PatchLink,用于集成连接组、投影组和转录组的可扩展工具
- 批准号:
10665493 - 财政年份:2023
- 资助金额:
$ 26.92万 - 项目类别:
Multi-ethnic risk prediction for complex human diseases integrating multi-source genetic and non-genetic information
整合多源遗传与非遗传信息的人类复杂疾病多民族风险预测
- 批准号:
10754773 - 财政年份:2023
- 资助金额:
$ 26.92万 - 项目类别:
Collaborative Research: Integrating Simulations, Experiments, and Machine Learning to Understand and Design Hydrophobic Interactions
协作研究:整合模拟、实验和机器学习来理解和设计疏水相互作用
- 批准号:
2245376 - 财政年份:2023
- 资助金额:
$ 26.92万 - 项目类别:
Standard Grant
Development of Novel Intracellular Analysis Methods by Integrating Raman Imaging and Machine Learning
通过集成拉曼成像和机器学习开发新型细胞内分析方法
- 批准号:
22KJ0287 - 财政年份:2023
- 资助金额:
$ 26.92万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Integrating genomics and metabolomics data to identify molecular characteristics of Gulf War Veterans' illnesses
整合基因组学和代谢组学数据来识别海湾战争退伍军人疾病的分子特征
- 批准号:
10486532 - 财政年份:2023
- 资助金额:
$ 26.92万 - 项目类别:
Integrating eye-tracking and ECG methodologies for remote infant neurocognitive assessments in the home
整合眼动追踪和心电图方法,在家中进行远程婴儿神经认知评估
- 批准号:
10773680 - 财政年份:2023
- 资助金额:
$ 26.92万 - 项目类别:
Integrating Musculoskeletal and Data-Driven Modeling to Understand the Biomechanical Sequelae of Syndesmotic Repair
整合肌肉骨骼和数据驱动建模以了解韧带联合修复的生物力学后遗症
- 批准号:
10751099 - 财政年份:2023
- 资助金额:
$ 26.92万 - 项目类别: