LEAPS-MPS: Statistical Learning on Next Generation Sequencing of T/B Cell Receptor Repertoire Data
LEAPS-MPS:T/B 细胞受体库数据下一代测序的统计学习
基本信息
- 批准号:2137983
- 负责人:
- 金额:$ 24.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Two crucial components of the adaptive immune system are the so-called T cells and B cells, whose function is identifying and responding to “body invaders”, such as for example coronavirus or cancer cells. Following each of the identify-and-respond processes, B cells and T cells leave a lifetime lasting legacy on cell surfaces known as B/T cell receptors, or BCRs/TCRs, which the body uses to respond quickly and strongly once the pathogen is detected again. BCR/TCR repertoire, which are continually shaped throughout the lifetime of an individual in response to diseases and infections, can also serve as a fingerprint of one’s current immunological profile. Recently, new technologies have enabled the profiling of BCR/TCR repertoire from a single sample of blood or tissue. However, due to the complex nature of the repertoire data, there is a need for novel statistical machine learning approaches and computational tools for immune repertoire data analysis. This project will produce statistical analysis methods, which will not only help us understand how the immune system is responding to disease or infection, but also help us advance precision medicine and immunotherapy, where treatments are developed and tailored to an individual for greater efficacy. This research has been designed to engage undergraduate and graduate students of mathematics and statistics, thus exposing them to the excitement of scientific discovery and preparing them for success in advanced degree programs and careers in academia and industry. By focusing on recruiting and training students from underrepresented groups, the PI will contribute to the diversification of the scientific workforce.T cells and B cells represent a crucial component of the adaptive immune system and have been shown to mediate anti-humoral immunity and mediate immune response to respiratory coronavirus. Next generation sequencing of the T and B cell receptors (TCRs and BCRs) can be used as a platform to profile the TCR/BCR repertoire. Due to the complex characteristics of repertoire data (heterogeneous, high-dimensional, presents three layers of information: gene usage, abundance, clone network), there are very limited statistical models and inference tools existing in the literature. The current analyses tools lack the ability to identify the repertoire signatures that are associated with the outcome of interest or to integrate multiple layers of information. The main goal of this project is to develop advanced statistical methods and machine learning methods to 1) identify the gene and gene families associated with the outcome using the gene usage layer of repertoire; 2) prioritize the network properties associated with outcome using the network layer of repertoire; 3) integrate the multiple layers of repertoire to evaluate the joint effect of heterogenous repertoire profile on the outcome. Particularly, a Bayesian hierarchical model will be developed to differential gene usages, a permutation-assisted group lasso will be developed to prioritize both local and global properties for network analysis, and various kernel methods will be utilized to model the complex relationship between repertoire features and outcome. Simulation studies and real data analysis on a public-available covid database will be performed to demonstrate the methods.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
适应性免疫系统的两个关键组成部分是所谓的T细胞和B细胞,其功能是识别和响应“身体入侵者”,例如冠状病毒或癌细胞。 在每一个识别和应答过程之后,B细胞和T细胞在细胞表面留下一个终生的遗产,称为B/T细胞受体,或BCR/TCR,一旦再次检测到病原体,身体就会迅速而强烈地做出反应。BCR/TCR库在个体的一生中响应于疾病和感染而不断形成,也可以作为一个人当前免疫学特征的指纹。最近,新技术使得能够从单个血液或组织样品中分析BCR/TCR库。然而,由于库数据的复杂性,需要用于免疫库数据分析的新的统计机器学习方法和计算工具。该项目将产生统计分析方法,这不仅有助于我们了解免疫系统如何对疾病或感染做出反应,还有助于我们推进精准医学和免疫疗法,为个体开发和定制治疗方法,以获得更大的疗效。这项研究旨在吸引数学和统计学的本科生和研究生,从而使他们接触到科学发现的兴奋,并为他们在学术界和工业界的高级学位课程和职业生涯中取得成功做好准备。通过专注于从代表性不足的群体中招募和培训学生,PI将有助于科学劳动力的多样化。T细胞和B细胞代表了适应性免疫系统的关键组成部分,已被证明可以介导抗体液免疫和介导对呼吸道冠状病毒的免疫反应。T和B细胞受体(TCR和BCR)的下一代测序可用作分析TCR/BCR库的平台。由于库数据的复杂性(异构、高维、呈现三层信息:基因使用、丰度、克隆网络),文献中存在的统计模型和推理工具非常有限。目前的分析工具缺乏识别与感兴趣的结果相关联的库签名或整合多层信息的能力。该项目的主要目标是开发先进的统计方法和机器学习方法,以1)使用库的基因使用层识别与结果相关的基因和基因家族; 2)使用库的网络层优先考虑与结果相关的网络属性; 3)整合库的多个层以评估异质库概况对结果的联合影响。特别是,贝叶斯分层模型将开发差异基因的使用,一个置换辅助组套索将开发优先级的本地和全球网络分析的属性,和各种内核的方法将被用来模拟剧目功能和结果之间的复杂关系。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tao He其他文献
Effectsof deformation of elastic constraints on free vibration characteristics of cantilever Bernoulli-Euler beams
弹性约束变形对悬臂伯努利-欧拉梁自由振动特性的影响
- DOI:
10.12989/sem.2016.59.6.1139 - 发表时间:
2016 - 期刊:
- 影响因子:2.2
- 作者:
Tong Wang;Tao He;Hongjing Li - 通讯作者:
Hongjing Li
Interfacial Choline-Aromatic Cation-Pi Interactions Can Contribute as Much to Peripheral Protein Affinity for Membranes as Aromatics Inserted Below the Phosphates
界面胆碱-芳香族阳离子-Pi 相互作用对膜的外周蛋白亲和力的贡献与插入磷酸盐下方的芳香族化合物一样多
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Qaiser Waheed;H. Khan;Tao He;M. Roberts;A. Gershenson;N. Reuter - 通讯作者:
N. Reuter
Insight into the cell-based smoothed finite element method for convection-dominated flows
深入了解对流主导流动的基于单元的平滑有限元方法
- DOI:
10.1016/j.compstruc.2018.10.021 - 发表时间:
2019-02 - 期刊:
- 影响因子:4.7
- 作者:
Tao He - 通讯作者:
Tao He
Predictive remapping givesrise to environmental inhibition of return
预测性重绘会引起环境对回归的抑制
- DOI:
10.3758/s13423-016-1066-x - 发表时间:
2016 - 期刊:
- 影响因子:3.5
- 作者:
Chuyao Yan;Tao He;Raymond M. Klein;Zhiguo Wang - 通讯作者:
Zhiguo Wang
Semantic Web Model and Reasoning Based on F-logic
基于F-logic的语义Web模型与推理
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Tao He;Liping Li;Huazhong Li;Jiangang Chen - 通讯作者:
Jiangang Chen
Tao He的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
时序释放Met/Qct-MPs葡萄糖响应型水凝胶对糖尿病创面微环境调节机制的研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
脓毒症血浆中微粒(MPs)对免疫细胞的作用机制 及其免疫抑制的机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
中性粒细胞释放CitH3+MPs活化NLRP3炎性小体激活胆汁淤积性肝病肝内凝血活性
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于 MPS 方法的燃料熔盐高温氧化与凝固迁徙行为机理研究
- 批准号:24ZR1478500
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于代谢组学的滋水清肝饮干预乳腺癌内分泌治疗相关MPS的多中心临床研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
六价铬和PET-MPs联合暴露诱导大鼠神经毒性铁死亡的机制研究
- 批准号:2024Y9704
- 批准年份:2024
- 资助金额:10.0 万元
- 项目类别:省市级项目
Mps1磷酸化RPA2增强ATR介导的DNA损伤修复促进高级别浆液性卵巢癌PARP抑制剂耐药的机制研究
- 批准号:82303896
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
融合MPS与GAN的复杂地质结构三维重建方法研究
- 批准号:42372341
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
PS-MPs环境暴露干扰甲状腺—棕色脂肪对话引发糖脂代谢紊乱的作用及机制研究
- 批准号:82370847
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
HIF-1α介导SOX17抑制纺锤体装配检查点相关基因Mps1调控滋养细胞功能的机制研究
- 批准号:82101760
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Postdoctoral Fellowship: MPS-Ascend: Topological Enrichments in Enumerative Geometry
博士后奖学金:MPS-Ascend:枚举几何中的拓扑丰富
- 批准号:
2402099 - 财政年份:2024
- 资助金额:
$ 24.57万 - 项目类别:
Fellowship Award
生理機能を再現するオルガノイド融合型MPSデバイスの開発
开发再现生理功能的类器官融合 MPS 装置
- 批准号:
23K26472 - 财政年份:2024
- 资助金额:
$ 24.57万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
ヒト脳関門の統合評価システムBrain-MPSの構築
人脑屏障综合评价系统Brain-MPS的构建
- 批准号:
24K18340 - 财政年份:2024
- 资助金额:
$ 24.57万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
LEAPS-MPS: Fast and Efficient Novel Algorithms for MHD Flow Ensembles
LEAPS-MPS:适用于 MHD 流系综的快速高效的新颖算法
- 批准号:
2425308 - 财政年份:2024
- 资助金额:
$ 24.57万 - 项目类别:
Standard Grant
LEAPS-MPS: Network Statistics of Rupturing Foams
LEAPS-MPS:破裂泡沫的网络统计
- 批准号:
2316289 - 财政年份:2024
- 资助金额:
$ 24.57万 - 项目类别:
Standard Grant
LEAPS-MPS: Light Tunable Redox-Active Hybrid Nanomaterial with Ultrahigh Catalytic Activity for Colorimetric Applications
LEAPS-MPS:具有超高催化活性的光可调氧化还原活性混合纳米材料,适用于比色应用
- 批准号:
2316793 - 财政年份:2024
- 资助金额:
$ 24.57万 - 项目类别:
Standard Grant
LEAPS-MPS: Applications of Algebraic and Topological Methods in Graph Theory Throughout the Sciences
LEAPS-MPS:代数和拓扑方法在图论中在整个科学领域的应用
- 批准号:
2313262 - 财政年份:2023
- 资助金额:
$ 24.57万 - 项目类别:
Standard Grant
Postdoctoral Fellowship: MPS-Ascend: Quantifying Accelerated Reaction Kinetics in Microdroplets with pH-Jump and Mass Spectrometry: From Small Molecules to Proteins and Beyond
博士后奖学金:MPS-Ascend:利用 pH 跳跃和质谱定量微滴中的加速反应动力学:从小分子到蛋白质及其他
- 批准号:
2316167 - 财政年份:2023
- 资助金额:
$ 24.57万 - 项目类别:
Fellowship Award
Postdoctoral Fellowship: MPS-Ascend: Understanding Fukaya categories through Homological Mirror Symmetry
博士后奖学金:MPS-Ascend:通过同调镜像对称理解深谷范畴
- 批准号:
2316538 - 财政年份:2023
- 资助金额:
$ 24.57万 - 项目类别:
Fellowship Award
LEAPS-MPS: Cooperative Transformations of N-Heterocycles with Heterometallic Complexes
LEAPS-MPS:N-杂环与异金属配合物的协同转化
- 批准号:
2316582 - 财政年份:2023
- 资助金额:
$ 24.57万 - 项目类别:
Standard Grant