ERI: Empowering Data-Driven Resource Management in Indoor 5G+ Wireless Networks
ERI:在室内 5G 无线网络中实现数据驱动的资源管理
基本信息
- 批准号:2138234
- 负责人:
- 金额:$ 19.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).Future trends in data traffic require high-quality wireless connections of multi-gigabits per second rates and less than ten milliseconds delay. However, the conventional radio spectrum is quite congested, and hence, it cannot satisfy such high demands. Consequently, unused high-frequency bands will be adopted in the fifth generation and beyond (5G+) wireless networks. Yet, wireless connectivity in high bands is challenged by frequent outages induced by user mobility. Recent studies show that advanced network management techniques based on artificial intelligence can maintain a reliable high-quality link with user mobility. However, to develop such advanced techniques, comprehensive highly-accurate datasets of wireless channel quality are required. Unfortunately, these datasets are not accessible to the research community. The first goal of this project is to develop a realistic and highly-accurate simulator that generates rich datasets of 5G+ wireless channels in the frequency range 400 – 800 Terahertz. This simulator will be made publicly available to empower research efforts in data-driven 5G+ network management solutions. The generated datasets will be validated through a state-of-the-art testbed. Moreover, the generated datasets will be characterized to learn the impact of user mobility patterns on the wireless channel quality. In addition, novel methods will be developed to predict the channel quality due to user mobility, which will further help in developing effective 5G+ network management tools. By empowering future research in data-driven network management solutions, this project enables a broad integration of high-frequency bands in 5G+ wireless networks. As a result, this project supports high-rate low-delay 5G+ technologies, much needed in the era of smart and connected communities and the internet of everything. Thereby, this project broadly impacts myriad aspects of the evolving digital society, particularly, for indoor mobile applications. Furthermore, this project provides workforce training in a highly desirable multi-disciplinary skillset while ensuring the participation of women and underrepresented groups.The 5G+ wireless networks will operate in the unused high-frequency bands, e.g., the visible light (VL) frequency band (400 – 800 Terahertz). While they can support ultra-high throughput and ultra-low latency traffic demands, the wireless channels at such bands suffer from limited diffraction capabilities. This results in frequent outages in communication links with user mobility due to blockage from static and/or mobile objects. Preliminary studies demonstrated that it is not practical to describe these link outages using a general probability distribution model, as such outages are tied to the environment-confined user mobility details. As a result, classical optimization tools will be ineffective for 5G+ network management. On the other hand, data-driven strategies can be used to design intelligent network management strategies that learn from the environment and adaptively allocate resources to the mobile users. However, adopting data-driven network management strategies is challenged by: 1) the absence of high-quality datasets of indoor mobile VL channel gains and 2) the sparsity of the VL channel gain data, which impedes the adoption of conventional data-driven tools. To address these limitations, the proposed project pursues the following research thrusts while considering office room layouts: T1) Development of efficient 5G+ mobile channel simulator that reflects realistic spatio-temporal features in the VL band and captures the impact of link unavailability due to dynamic blockages with the objects and users' bodies. The simulator will be publicly available to empower further research in 5G+ data-driven network management; T2) Development of an efficient 5G+ channel predictor that provides useful VL channel state information for future time frames despite the high sparsity in the channel dataset. The predictor will empower various proactive data-driven 5G+ network management strategies. The developed methods and tools in this project will be validated through a testbed that mimics a VL-based indoor networking setup.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项全部或部分由2021年美国救援计划法案(公法117-2)资助。数据流量的未来趋势需要每秒数千兆比特速率和小于10毫秒延迟的高质量无线连接。然而,传统的无线电频谱是相当拥挤的,因此,它不能满足这样高的需求。因此,未使用的高频频段将在第五代及以后(5G+)无线网络中采用。然而,高频段的无线连接受到用户移动性引起的频繁中断的挑战。最近的研究表明,基于人工智能的先进网络管理技术可以在用户移动的情况下保持可靠的高质量链路。然而,为了开发这样的先进技术,需要无线信道质量的全面的高精度数据集。不幸的是,这些数据集是无法访问的研究界。该项目的第一个目标是开发一个逼真且高度准确的模拟器,在400 - 800太赫兹的频率范围内生成丰富的5G+无线信道数据集。该模拟器将公开提供,以支持数据驱动的5G+网络管理解决方案的研究工作。生成的数据集将通过最先进的测试平台进行验证。此外,所生成的数据集将被表征以学习用户移动性模式对无线信道质量的影响。此外,还将开发新的方法来预测用户移动性导致的信道质量,这将进一步帮助开发有效的5G+网络管理工具。通过支持未来对数据驱动的网络管理解决方案的研究,该项目实现了5G+无线网络中高频频段的广泛集成。因此,该项目支持高速率低延迟的5G+技术,这是智能互联社区和万物互联时代所急需的。因此,该项目广泛影响了不断发展的数字社会的各个方面,特别是室内移动的应用。此外,该项目还提供了非常理想的多学科技能的劳动力培训,同时确保妇女和代表性不足的群体的参与。5G+无线网络将在未使用的高频频段上运行,例如,可见光(VL)频带(400 - 800太赫兹)。虽然它们可以支持超高吞吐量和超低延迟的业务需求,但这些频带上的无线信道的衍射能力有限。由于来自静态和/或移动的对象的阻塞,这导致具有用户移动性的通信链路中的频繁中断。初步研究表明,这是不切实际的,以描述这些链路中断使用一般的概率分布模型,因为这样的中断是绑定到环境限制的用户移动性的细节。因此,经典的优化工具对于5G+网络管理将是无效的。另一方面,数据驱动的策略可以用来设计智能网络管理策略,从环境中学习,并自适应地分配资源给移动的用户。然而,采用数据驱动的网络管理策略受到以下方面的挑战:1)缺乏室内移动的VL信道增益的高质量数据集,以及2)VL信道增益数据的稀疏性,这阻碍了传统数据驱动工具的采用。为了解决这些限制,拟议项目在考虑办公室布局的同时追求以下研究目标:T1)开发高效的5G+移动的信道模拟器,该模拟器反映VL频带中的真实时空特征,并捕获由于对象和用户身体的动态阻塞而导致的链路不可用的影响。该模拟器将公开提供,以支持5G+数据驱动的网络管理的进一步研究; T2)开发高效的5G+信道预测器,尽管信道数据集具有高稀疏性,但该预测器仍为未来的时间帧提供有用的VL信道状态信息。该预测器将为各种主动的数据驱动的5G+网络管理策略提供支持。该项目中开发的方法和工具将通过模拟基于VL的室内网络设置的测试平台进行验证。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Muhammad Ismail其他文献
Stochastic Geometry Planning of Electric Vehicles Charging Stations
电动汽车充电站的随机几何规划
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
R. Atat;Muhammad Ismail;E. Serpedin - 通讯作者:
E. Serpedin
Brain-Targeted Cas12a Ribonucleoprotein Nanocapsules Enable Synergetic Gene Co-Editing Leading to Potent Inhibition of Orthotopic Glioblastoma.
脑靶向 Cas12a 核糖核蛋白纳米胶囊可实现协同基因共同编辑,从而有效抑制原位胶质母细胞瘤。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
W. Ruan;Sen Xu;Yang An;Yingxue Cui;Yang Liu;Yibin Wang;Muhammad Ismail;Yong Liu;Meng Zheng - 通讯作者:
Meng Zheng
FACTORS AFFECTING ASSESSMENT PRACTICES IN OPEN AND DISTANCE LEARNING (ODL) SYSTEM: A CASE STUDY OF ALLAMA IQBAL OPEN UNIVERSITY (AIOU)
影响开放远程学习 (ODL) 系统评估实践的因素:阿拉马·伊巴尔开放大学 (AIOU) 案例研究
- DOI:
10.36261/ijdeel.v8i1.2656 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Sajjad Ahmad;Rahmat Ullah Bhatti;Muhammad Ismail - 通讯作者:
Muhammad Ismail
IDC Interference-Aware Resource Allocation for LTE/WLAN Heterogeneous Networks
LTE/WLAN 异构网络的 IDC 干扰感知资源分配
- DOI:
10.1109/lwc.2015.2467328 - 发表时间:
2015 - 期刊:
- 影响因子:6.3
- 作者:
Mohamed F. Marzban;Muhammad Ismail;M. Abdallah;M. Khairy;K. Qaraqe;E. Serpedin - 通讯作者:
E. Serpedin
Recalibrating Impact of Regional Actors on Security of China–Pakistan Economic Corridor (CPEC)
重新调整地区行为体对中巴经济走廊(CPEC)安全的影响
- DOI:
10.1007/s40647-022-00347-9 - 发表时间:
2022 - 期刊:
- 影响因子:2
- 作者:
Muhammad Ismail;Syed Mehdi Husnain - 通讯作者:
Syed Mehdi Husnain
Muhammad Ismail的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Muhammad Ismail', 18)}}的其他基金
Beginnings: Creating and Sustaining a Diverse Community of Expertise in Quantum Information Science (EQUIS) Across the Southeastern United States
起点:在美国东南部创建并维持一个多元化的量子信息科学 (EQUIS) 专业社区
- 批准号:
2322594 - 财政年份:2023
- 资助金额:
$ 19.95万 - 项目类别:
Cooperative Agreement
Collaborative Research: SHIELD: Strategic Holistic Framework for Intrusion Prevention Using Multi-modal Data in Power Systems
合作研究:SHIELD:在电力系统中使用多模态数据进行入侵防御的战略整体框架
- 批准号:
2220346 - 财政年份:2022
- 资助金额:
$ 19.95万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: JUNO3: SWIFT: Softwarization of Intelligence for Efficient 6G Mobile Networks
合作研究:NeTS:JUNO3:SWIFT:高效 6G 移动网络的智能软件化
- 批准号:
2210251 - 财政年份:2022
- 资助金额:
$ 19.95万 - 项目类别:
Continuing Grant
CyberCorps Scholarship for Service (Renewal): An Enhanced and Integrated Scholar Experience in Cybersecurity
CyberCorps 服务奖学金(续展):网络安全领域增强和综合的学者经验
- 批准号:
2043324 - 财政年份:2021
- 资助金额:
$ 19.95万 - 项目类别:
Continuing Grant
TENNESSEE CYBERCORPS: A HYBRID PROGRAM IN CYBERSECURITY
田纳西州网络军团:网络安全混合计划
- 批准号:
1565562 - 财政年份:2016
- 资助金额:
$ 19.95万 - 项目类别:
Continuing Grant
相似海外基金
I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
- 批准号:
2409130 - 财政年份:2024
- 资助金额:
$ 19.95万 - 项目类别:
Standard Grant
Cens-able - Improving and empowering census data research opportunities in Scotland
Cens-able - 改善和增强苏格兰的人口普查数据研究机会
- 批准号:
ES/Z502881/1 - 财政年份:2024
- 资助金额:
$ 19.95万 - 项目类别:
Research Grant
Empowering Next-Generation Spatial Digital Twins with Linked Spatial Data
利用链接的空间数据赋能下一代空间数字孪生
- 批准号:
DP240101006 - 财政年份:2024
- 资助金额:
$ 19.95万 - 项目类别:
Discovery Projects
SaTC: CORE: Medium: Analytic versus Data Driven Models in Steganography: Empowering Each Other
SaTC:核心:中:隐写术中的分析模型与数据驱动模型:相互赋能
- 批准号:
2324991 - 财政年份:2023
- 资助金额:
$ 19.95万 - 项目类别:
Continuing Grant
Empowering providers with software using medical knowledge and data to improve patient care.
为提供商提供使用医学知识和数据的软件来改善患者护理。
- 批准号:
566883-2021 - 财政年份:2021
- 资助金额:
$ 19.95万 - 项目类别:
Applied Research and Development Grants - Level 1
NCS-FO: Empowering Data-Driven Hypothesis Generation for Scalable Connectomics Analysis
NCS-FO:为可扩展的连接组学分析提供数据驱动的假设生成
- 批准号:
2124179 - 财政年份:2021
- 资助金额:
$ 19.95万 - 项目类别:
Standard Grant
SBIR Phase I: Empowering Discovery of COVID-19 Vaccine through Large Scale Unsupervised Deeplearning for Electron Microscopy Data
SBIR 第一阶段:通过电子显微镜数据的大规模无监督深度学习促进 COVID-19 疫苗的发现
- 批准号:
2032548 - 财政年份:2020
- 资助金额:
$ 19.95万 - 项目类别:
Standard Grant
Empowering the pipedriver technology for water pipeline inspection through multi-sensor data analytics
通过多传感器数据分析,为水管检查提供管道驱动技术
- 批准号:
523761-2018 - 财政年份:2020
- 资助金额:
$ 19.95万 - 项目类别:
Collaborative Research and Development Grants
WoU-MMA: Empowering Multimessenger Science via Improving LIGO Data
WoU-MMA:通过改进 LIGO 数据增强多信使科学能力
- 批准号:
2012035 - 财政年份:2020
- 资助金额:
$ 19.95万 - 项目类别:
Standard Grant
Empowering the pipedriver technology for water pipeline inspection through multi-sensor data analytics
通过多传感器数据分析,为水管检查提供管道驱动技术
- 批准号:
523761-2018 - 财政年份:2019
- 资助金额:
$ 19.95万 - 项目类别:
Collaborative Research and Development Grants