ERI: Towards Data-driven Learning and Control of Building HVAC Systems
ERI:迈向数据驱动的建筑 HVAC 系统学习和控制
基本信息
- 批准号:2138388
- 负责人:
- 金额:$ 19.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Buildings account for about 40% of the total annual energy consumption in the U.S., of which about 44% is for heating, ventilation, and air conditioning (HVAC) systems. Indirectly through their energy use, buildings contribute about 35% of the total annual carbon dioxide emissions from energy consumption in the U.S. There is a significant potential for reducing energy use of buildings and their associated environmental impact by using advanced control of HVAC systems. Moreover, the U.S. Department of Energy has initiated a national strategy on grid-interactive efficient buildings, that will help triple the energy efficiency and demand flexibility of buildings and improve the power grid efficiency and reliability. Model Predictive Control (MPC) has emerged as a potential advanced building control technology to attain these goals. However, its transition to practice has been hampered by fundamental challenges, including the difficulty and high cost of developing accurate building models for control and the high engineering effort to implement MPC in buildings. This project will lay the scientific foundation for overcoming these fundamental challenges of MPC for buildings, integrating machine learning, control theory, optimization theory, and building science. It will develop novel methods and algorithms for data-driven learning and control of HVAC systems, and demonstrate them in experiments with real buildings. More broadly, this research will advance scientific knowledge in learning and control of complex physical systems, which will have far-reaching impacts in many other applications. It will integrate research efforts into education and outreach, including new research opportunities for undergraduate students and outreach activities to K-12 school students and the public to enrich public understanding of building energy efficiency and its technologies. These efforts are complemented by extensive recruitment and mentorship of underrepresented minorities in STEM.The goal of this project is to develop a new framework, theory, and methods for effective and efficient data-driven modeling, learning, and control of building HVAC systems by bridging machine learning, dynamics, control, and optimization. To this end, the specific objectives of this project are to develop (1) a physics-informed data-driven modeling approach for building HVAC systems that effectively incorporates appropriate domain insights into machine learning models; (2) active learning methods to obtain the most informative experimental data for improving model accuracy and sample efficiency; and (3) effective formulations and efficient optimization algorithms for learning-based MPC (LB-MPC) with the physics-informed data-driven models. The feasibility and merits of these methods will be validated through extensive experimental verification on a variety of real buildings. This project provides a path towards autonomous, performant, and practical LB-MPC for buildings by establishing a holistic physics-informed data-driven modeling foundation and a suite of learning, control, and optimization methods for building HVAC systems. It will bridge the gap between black-box and gray-box modeling approaches to advance the state of the art on control-oriented building modeling by effectively incorporating appropriate domain insights into data-driven models, enabling reliable, sample-efficient, and accurate data-driven models. It also has the potential to transform the collection of training data for data-driven building modeling through active learning methods that find the optimal excitation trajectory for learning. Finally, it will overcome the computational challenges of data-driven control by formulating effective and tractable LB-MPC optimization problems and tailoring algorithms for solving these problems efficiently.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在美国,建筑物约占全年能源消耗总量的40%,其中约44%用于加热、通风和空调(HVAC)系统。通过能源使用,建筑物间接贡献了美国能源消耗每年二氧化碳排放总量的约35%。通过使用先进的控制来减少建筑物的能源使用及其相关的环境影响,有很大的潜力。空调系统。此外,美国能源部还启动了一项关于电网互动高效建筑的国家战略,这将有助于将建筑物的能源效率和需求灵活性提高三倍,并提高电网效率和可靠性。模型预测控制(MPC)已经成为一种潜在的先进的楼宇控制技术,以实现这些目标。然而,其向实践的过渡受到根本性挑战的阻碍,包括开发用于控制的准确建筑模型的困难和高成本以及在建筑物中实施MPC的高工程工作。该项目将为克服建筑MPC的这些基本挑战奠定科学基础,整合机器学习,控制理论,优化理论和建筑科学。它将开发用于HVAC系统的数据驱动学习和控制的新方法和算法,并在真实的建筑物的实验中进行演示。更广泛地说,这项研究将推进学习和控制复杂物理系统的科学知识,这将在许多其他应用中产生深远的影响。它将把研究工作纳入教育和推广活动,包括为本科生提供新的研究机会,并为K-12学校学生和公众开展推广活动,以丰富公众对建筑节能及其技术的了解。该项目的目标是开发一个新的框架、理论和方法,通过桥接机器学习、动力学、控制和优化,实现建筑HVAC系统的有效和高效的数据驱动建模、学习和控制。为此,该项目的具体目标是开发(1)用于构建HVAC系统的物理信息数据驱动建模方法,该方法有效地将适当的领域见解纳入机器学习模型;(2)主动学习方法,以获得最丰富的实验数据,从而提高模型准确性和样本效率;以及(3)具有物理信息数据驱动模型的基于学习的MPC(LB-MPC)的有效公式和有效优化算法。通过对各种真实的建筑物的大量实验验证,验证了这些方法的可行性和优点。该项目通过建立一个整体的物理信息数据驱动的建模基础和一套用于建筑HVAC系统的学习,控制和优化方法,为建筑物提供了一条通往自主,高性能和实用的LB-MPC的道路。它将弥合黑盒和灰盒建模方法之间的差距,通过有效地将适当的领域见解纳入数据驱动模型,实现可靠,样本效率和准确的数据驱动模型,从而推进面向控制的建筑建模的最新技术水平。它还具有通过主动学习方法转换数据驱动建筑建模的训练数据集合的潜力,这些方法可以找到最佳的激励轨迹进行学习。最后,它将通过制定有效和易于处理的LB-MPC优化问题和定制算法来有效解决这些问题,从而克服数据驱动控制的计算挑战。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Physics-Informed Machine Learning for Modeling and Control of Dynamical Systems
- DOI:10.23919/acc55779.2023.10155901
- 发表时间:2023-05
- 期刊:
- 影响因子:0
- 作者:Truong X. Nghiem;Ján Drgoňa;Colin N. Jones;Zoltán Nagy;Roland Schwan;Biswadip Dey;A. Chakrabarty
- 通讯作者:Truong X. Nghiem;Ján Drgoňa;Colin N. Jones;Zoltán Nagy;Roland Schwan;Biswadip Dey;A. Chakrabarty
Causal Deep Operator Networks for Data-Driven Modeling of Dynamical Systems
用于动力系统数据驱动建模的因果深度算子网络
- DOI:10.1109/smc53992.2023.10394294
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Nghiem, Truong X.;Nguyen, Thang;Nguyen, Binh T.;Nguyen, Linh
- 通讯作者:Nguyen, Linh
Multistep Predictions for Adaptive Sampling in Mobile Robotic Sensor Networks Using Proximal ADMM
使用 Proximal ADMM 在移动机器人传感器网络中进行自适应采样的多步预测
- DOI:10.1109/access.2022.3183680
- 发表时间:2022
- 期刊:
- 影响因子:3.9
- 作者:Le, Viet-Anh;Nguyen, Linh;Nghiem, Truong X.
- 通讯作者:Nghiem, Truong X.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Truong Nghiem其他文献
Truong Nghiem的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Truong Nghiem', 18)}}的其他基金
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331710 - 财政年份:2024
- 资助金额:
$ 19.95万 - 项目类别:
Standard Grant
CAREER: Composite Physics-Informed Learning of Dynamic Systems
职业:动态系统的复合物理知情学习
- 批准号:
2238296 - 财政年份:2023
- 资助金额:
$ 19.95万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: Frameworks: MobilityNet: A Trustworthy CI Emulation Tool for Cross-Domain Mobility Data Generation and Sharing towards Multidisciplinary Innovations
协作研究:框架:MobilityNet:用于跨域移动数据生成和共享以实现多学科创新的值得信赖的 CI 仿真工具
- 批准号:
2411152 - 财政年份:2024
- 资助金额:
$ 19.95万 - 项目类别:
Standard Grant
Solving the disability data puzzle to ensure progress towards equity
解决残疾数据难题,确保在实现公平方面取得进展
- 批准号:
IE230100561 - 财政年份:2024
- 资助金额:
$ 19.95万 - 项目类别:
Early Career Industry Fellowships
Towards an Explainable, Efficient, and Reliable Federated Learning Framework: A Solution for Data Heterogeneity
迈向可解释、高效、可靠的联邦学习框架:数据异构性的解决方案
- 批准号:
24K20848 - 财政年份:2024
- 资助金额:
$ 19.95万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Frameworks: MobilityNet: A Trustworthy CI Emulation Tool for Cross-Domain Mobility Data Generation and Sharing towards Multidisciplinary Innovations
协作研究:框架:MobilityNet:用于跨域移动数据生成和共享以实现多学科创新的值得信赖的 CI 仿真工具
- 批准号:
2411153 - 财政年份:2024
- 资助金额:
$ 19.95万 - 项目类别:
Standard Grant
Towards knowledge discovery from imperfect and evolving data
从不完美和不断发展的数据中发现知识
- 批准号:
DP240103070 - 财政年份:2024
- 资助金额:
$ 19.95万 - 项目类别:
Discovery Projects
GLIOMATCH: The malignant Glioma immuno-oncology matchmaker: towards data-driven precision medicine using spatially resolved radio-multiomics
GLIOMATCH:恶性胶质瘤免疫肿瘤学媒人:利用空间分辨的放射多组学实现数据驱动的精准医学
- 批准号:
10113516 - 财政年份:2024
- 资助金额:
$ 19.95万 - 项目类别:
EU-Funded
Collaborative Research: Frameworks: MobilityNet: A Trustworthy CI Emulation Tool for Cross-Domain Mobility Data Generation and Sharing towards Multidisciplinary Innovations
协作研究:框架:MobilityNet:用于跨域移动数据生成和共享以实现多学科创新的值得信赖的 CI 仿真工具
- 批准号:
2411151 - 财政年份:2024
- 资助金额:
$ 19.95万 - 项目类别:
Standard Grant
OAC Core: Towards Zero-Carbon Data Movement at the HPC and Cloud Data Centers with GreenDataFlow
OAC 核心:利用 GreenDataFlow 在 HPC 和云数据中心实现零碳数据移动
- 批准号:
2313061 - 财政年份:2023
- 资助金额:
$ 19.95万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Towards Harmonious Federated Intelligence in Heterogeneous Edge Computing via Data Migration
协作研究:SHF:中:通过数据迁移实现异构边缘计算中的和谐联邦智能
- 批准号:
2312617 - 财政年份:2023
- 资助金额:
$ 19.95万 - 项目类别:
Continuing Grant
Elucidating the Role of Endothelial Dysfunction in Alzheimer Disease: Towards A New Data-Driven Disease Model
阐明内皮功能障碍在阿尔茨海默病中的作用:建立新的数据驱动疾病模型
- 批准号:
10737969 - 财政年份:2023
- 资助金额:
$ 19.95万 - 项目类别: