ERI: Investigating How Tissue Stiffness and Fluid Flow Coordinate to Regulate Lymphatic Capillary Growth and Function

ERI:研究组织硬度和液流如何协调调节毛细淋巴管的生长和功能

基本信息

  • 批准号:
    2138841
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-02-01 至 2025-01-31
  • 项目状态:
    未结题

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).This Engineering Research Initiation (ERI) award will advance fundamental knowledge about lymphatic vessels. The results will positively impact future strategies for addressing lymphatic disorders. Lymphatic vessels drain fluid from tissues and transport immune cells throughout the body. When vessels are compromised, consequences include fluid buildup in tissues, weakened immune function, and/or disease progression. There are limited effective treatments. This is in part because the response of these vessels to changes in the surrounding tissues is incompletely understood. Plenty of information is known about how fluid flow affects vessel growth and function. However, less is known about how tissue stiffness plays a role. This is surprising because changes in stiffness occur in many disorders. This work will study the combined effects of fluid flow and tissue stiffness on vessel growth and function. Experimental models will be used to study variable stiffness and controlled fluid flow, and their combination, to reveal how lymphatic vessel behavior is regulated. Results from this work will enhance the ability to make informed decisions about studying lymphatic disorders and developing treatment strategies. The project approach combines multiple aspects of engineering and biology. It will provide opportunities for advanced training and workforce development across disciplines. Research training and mentorship will also broaden participation of underrepresented groups in research and engage an even broader population through community and educational outreach.Despite extensive research on lymphatics and fluid-induced biomechanical forces, lymphatic mechanobiology as it relates to tissue stiffness is not well understood. There is an overall gap in knowledge around how extracellular matrix stiffness in tissues factors into lymph vessel regulation. This gap is significant since matrix remodeling and progressive tissue stiffening are critical to normal and disease processes, and many lymphatic disorders lack curative treatments. The objective is to combine a microfluidic chip with a responsive biomaterial to systematically apply fluid flow, pressure, and progressive extracellular matrix stiffening to lymphatic endothelial cells. The project will use progressive matrix stiffening to establish a role for changing tissue stiffness in regulating mechanosensors in lymph capillaries. The research team will then apply a combination of mechanical inputs—fluid flow, pressure, and stiffness—to link their interactions with specific mechanosensing targets and functional outcomes. Results will identify mechanosensory complexes that are regulated by coordinated mechanical inputs and expand perspectives on what drives lymph capillary regulation and dysregulation. The knowledge gained will advance an understudied area of lymphatic mechanobiology and enhance the ability to make informed decisions about how lymphatic disorders are studied and treated.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项全部或部分由《2021年美国救援计划法案》(公法117-2)资助。该工程研究启动(ERI)奖将推进有关淋巴管的基础知识。结果将积极影响未来的战略,以解决淋巴疾病。淋巴管从组织中排出液体,并将免疫细胞输送到全身。当血管受损时,后果包括组织内液体积聚、免疫功能减弱和/或疾病进展。有效的治疗方法有限。部分原因是这些血管对周围组织变化的反应尚不完全清楚。关于流体流动如何影响血管生长和功能,我们已经知道了很多信息。然而,人们对组织刚度如何发挥作用知之甚少。这是令人惊讶的,因为僵硬的变化发生在许多疾病中。这项工作将研究流体流动和组织刚度对血管生长和功能的综合影响。实验模型将用于研究变刚度和受控流体流动,以及它们的组合,以揭示淋巴管行为是如何被调节的。这项工作的结果将提高在研究淋巴疾病和制定治疗策略方面做出明智决定的能力。项目方法结合了工程和生物学的多个方面。它将为跨学科的高级培训和劳动力发展提供机会。研究培训和指导还将扩大代表性不足的群体对研究的参与,并通过社区和教育外展吸引更广泛的人口。尽管对淋巴和液体诱导的生物力学力进行了广泛的研究,但淋巴力学生物学与组织刚度的关系还没有得到很好的理解。关于组织中细胞外基质刚度如何影响淋巴管调节的知识总体上存在差距。这一差距是显著的,因为基质重塑和进行性组织硬化对正常和疾病过程至关重要,许多淋巴疾病缺乏根治性治疗。目的是将微流控芯片与反应性生物材料相结合,系统地对淋巴内皮细胞施加流体流动、压力和渐进式细胞外基质硬化。该项目将使用渐进式基质硬化来确定改变组织刚度在调节淋巴毛细血管机械传感器中的作用。然后,研究团队将结合流体流量、压力和刚度等机械输入,将它们与特定的机械传感目标和功能结果联系起来。结果将确定由协调的机械输入调节的机械感觉复合物,并扩大对驱动淋巴毛细血管调节和失调的观点。所获得的知识将推进淋巴机械生物学的一个研究不足的领域,并提高对如何研究和治疗淋巴疾病做出明智决定的能力。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Catherine Whittington其他文献

Catherine Whittington的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Investigating how expatriate English language teachers can overcome the obstacle of student silence in Japanese university classrooms
调查外籍英语教师如何克服日本大学课堂上学生沉默的障碍
  • 批准号:
    24K04097
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Investigating how visual imagery influences cognition
研究视觉意象如何影响认知
  • 批准号:
    DE240100606
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Early Career Researcher Award
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Operating Grants
How did our masticatory system evolve? Investigating bone and teeth microstructure in extant and fossil apes through X-ray synchrotron microtomography
我们的咀嚼系统是如何进化的?
  • 批准号:
    2888465
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Studentship
Providing for our pollinators: Investigating how urbanisation affects the ecology of flower-feeding insects
为我们的传粉者提供食物:调查城市化如何影响食花昆虫的生态
  • 批准号:
    2883596
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Studentship
Agents of Change: Investigating How Partnerships between Faculty and Learning Assistants Enable Pathways for Sustainable Institutional and Classroom Transformation
变革的推动者:调查教师和学习助理之间的合作如何为可持续的机构和课堂转型提供途径
  • 批准号:
    2234074
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Investigating how worms integrate sensory and motor information in salt klinotaxis
研究蠕虫如何在盐轴运动中整合感觉和运动信息
  • 批准号:
    23KJ0475
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Investigating how bHLH circuits integrate signals for cell fate decisions
研究 bHLH 电路如何整合信号以决定细胞命运
  • 批准号:
    10722452
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
Investigating how nuclear pore components exploit an ER-dependent quality control pathway
研究核孔成分如何利用内质网依赖的质量控制途径
  • 批准号:
    10792336
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
LTER: CAP V: Investigating how relationships between urban ecological infrastructure and human-environment interactions shape the structure and function of urban ecosystems
LTER:CAP V:研究城市生态基础设施和人类与环境相互作用之间的关系如何塑造城市生态系统的结构和功能
  • 批准号:
    2224662
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了