Collaborative Research: FRR: Adaptive mechanics, learning and intelligent control improve soft robotic grasping
合作研究:FRR:自适应力学、学习和智能控制改善软机器人抓取
基本信息
- 批准号:2138873
- 负责人:
- 金额:$ 81.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Handling soft, fragile, or slippery objects such as ripe fruit remains a challenge in robotics. Soft robotic graspers show tremendous promise in safely handling such objects without damaging them. Furthermore, creating software to control soft robots poses an additional challenge. In contrast, many animals with soft bodies solve this problem everyday as they forage and feed. Not only are they able to grasp and manipulate soft and fragile objects, but animals can also learn how to safely interact with new objects and vary how much force they apply during grasping based on their prior experience. This project will take inspiration from an animal with a body, the sea slug, that feeds successfully on a range of seaweeds that vary greatly in size, toughness and shape, to create new type of soft grasping robot. This project will also create a mechanism that can learn how to safely grasp a wide range of objects, including fragile foods like tomatoes and mushrooms. The ability for a robot to learn how to safely handle soft and fragile objects will have future applications in agriculture, manufacturing, and medicine. This project will also support the training of a diverse workforce in science and engineering. Students from grade school through college will be included as research participants to test the robot. Additionally, this project will support cross-disciplinary training through graduate student training, outreach activities, summer research experiences for undergraduates, and internships in scientific illustration.This project will test the hypothesis that soft, morphologically intelligent grasping robots with onboard bioinspired learning and local control will improve grasping performance and ease of use by rapidly adjusting controller and actuator properties and learning in real-time. To test this hypothesis, this project will: (1) implement actuator adaptability over short timescales, mimicking short-term changes in biological muscle, (2) implement local control adaptability through short-term learning in a synthetic nervous system (SNS), mimicking short-term network changes in biological neural systems, and (3) implement longer-term synaptic weight changes in an SNS, mimicking learning from experience. In Aims 1 and 2, a bioinspired approach will be applied to develop a soft grasper inspired by Aplysia californica (sea slug) feeding. In Aim 3, this approach will be extended to a robot arm and long-term learning will be incorporated into the controller. To precisely identify elements of the network subject to learning, this project will study grasping in a tractable animal model, Aplysia californica. This marine sea slug is adept at grasping soft, fragile, slippery objects and rapidly learns with experience. Furthermore, Aplysia’s grasping control circuitry contains only a few hundred neurons, allowing the measurement of specific changes in key network elements during learning. To assess the value of biological principles for grasping, this project will use human subjects to measure the robotic grasper’s performance, ease of use, and operator training time. Baseline data will be established with a conventional grasper and performance will be compared as adaptability is integrated into the system.This project is supported by the cross-directorate Foundational Research in Robotics program, jointly managed and funded by the Directorates for Engineering (ENG) and Computer and Information Science and Engineering (CISE).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
处理柔软、易碎或光滑的物体(例如成熟的水果)仍然是机器人技术中的一个挑战。软机器人抓取器在安全处理此类物体而不损坏它们方面显示出巨大的前景。此外,创建控制软机器人的软件也带来了额外的挑战。相比之下,许多身体柔软的动物每天在觅食和进食时都会解决这个问题。它们不仅能够抓握和操纵柔软易碎的物体,而且还可以学习如何安全地与新物体互动,并根据之前的经验改变抓握过程中施加的力量。该项目将从一种有身体的动物——海蛞蝓中获得灵感,这种动物成功地以一系列尺寸、韧性和形状各不相同的海藻为食,创造出新型的软抓取机器人。该项目还将创建一种机制,可以学习如何安全地抓取各种物体,包括西红柿和蘑菇等易碎食物。机器人学习如何安全处理柔软易碎物体的能力将在农业、制造业和医学领域得到应用。该项目还将支持科学和工程领域多元化劳动力的培训。从小学到大学的学生都将作为研究参与者来测试机器人。此外,该项目还将通过研究生培训、外展活动、本科生暑期研究经历以及科学插图实习来支持跨学科培训。该项目将测试这样的假设:具有机载仿生学习和本地控制功能的软形态智能抓取机器人将通过快速调整控制器和执行器属性和实时学习来提高抓取性能和易用性。为了检验这一假设,该项目将:(1)在短时间内实现执行器适应性,模仿生物肌肉的短期变化,(2)通过合成神经系统(SNS)中的短期学习实现局部控制适应性,模仿生物神经系统中的短期网络变化,以及(3)在SNS中实现长期突触权重变化,模仿经验学习。在目标 1 和 2 中,将采用仿生方法来开发受海兔(海蛞蝓)喂养启发的软抓握器。在目标 3 中,这种方法将扩展到机器人手臂,并将长期学习纳入控制器中。为了精确识别需要学习的网络元素,该项目将研究一种易于驯服的动物模型——海兔(Aplysia californica)的抓握行为。这种海洋海蛞蝓善于抓住柔软、易碎、光滑的物体,并能通过经验快速学习。此外,海兔的抓取控制电路仅包含数百个神经元,可以测量学习过程中关键网络元素的特定变化。为了评估生物学原理对于抓取的价值,该项目将使用人体受试者来测量机器人抓取器的性能、易用性和操作员培训时间。将使用传统抓取器建立基线数据,并在将适应性集成到系统中时对性能进行比较。该项目得到了机器人学跨部门基础研究计划的支持,该计划由工程理事会 (ENG) 和计算机与信息科学与工程理事会 (CISE) 共同管理和资助。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和技术进行评估,认为值得支持。 更广泛的影响审查标准。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Bioinspired Synthetic Nervous System Controller for Pick-and-Place Manipulation
用于拾放操作的仿生合成神经系统控制器
- DOI:10.1109/icra48891.2023.10161198
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Li, Yanjun;Sukhnandan, Ravesh;Gill, Jeffrey P.;Chiel, Hillel J.;Webster-Wood, Victoria;Quinn, Roger D.
- 通讯作者:Quinn, Roger D.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roger Quinn其他文献
Roger Quinn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Roger Quinn', 18)}}的其他基金
NeuroNex: Communication, Coordination, and Control in Neuromechanical Systems (C3NS)
NeuroNex:神经机械系统中的通信、协调和控制 (C3NS)
- 批准号:
2015317 - 财政年份:2020
- 资助金额:
$ 81.66万 - 项目类别:
Continuing Grant
RI: Medium: Collaborative Research: A Structure-Math-Function Approach for Designing Robustly Intelligent Synthetic Nervous Systems
RI:媒介:协作研究:设计鲁棒智能合成神经系统的结构-数学-函数方法
- 批准号:
1704436 - 财政年份:2017
- 资助金额:
$ 81.66万 - 项目类别:
Standard Grant
CPS: Medium: Integrated control of biological and mechanical power for standing balance and gait stability after paralysis
CPS:中:生物和机械动力的综合控制,用于瘫痪后的站立平衡和步态稳定性
- 批准号:
1739800 - 财政年份:2017
- 资助金额:
$ 81.66万 - 项目类别:
Standard Grant
US-German Collaboration: Testing Muscle Synergies in a Neuromechanical Rat Model for Nominal and Perturbed Locomotion
美德合作:在神经机械大鼠模型中测试标称运动和扰动运动的肌肉协同作用
- 批准号:
1608111 - 财政年份:2016
- 资助金额:
$ 81.66万 - 项目类别:
Continuing Grant
RI: Medium: Dynamical Coordination and Sequencing of Multifunctionality in Animals and Robots
RI:媒介:动物和机器人多功能性的动态协调和测序
- 批准号:
1065489 - 财政年份:2011
- 资助金额:
$ 81.66万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348998 - 财政年份:2025
- 资助金额:
$ 81.66万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348999 - 财政年份:2025
- 资助金额:
$ 81.66万 - 项目类别:
Standard Grant
Collaborative Research: Investigating Southern Ocean Sea Surface Temperatures and Freshening during the Late Pliocene and Pleistocene along the Antarctic Margin
合作研究:调查上新世晚期和更新世沿南极边缘的南大洋海面温度和新鲜度
- 批准号:
2313120 - 财政年份:2024
- 资助金额:
$ 81.66万 - 项目类别:
Standard Grant
NSF Engines Development Award: Utilizing space research, development and manufacturing to improve the human condition (OH)
NSF 发动机发展奖:利用太空研究、开发和制造来改善人类状况(OH)
- 批准号:
2314750 - 财政年份:2024
- 资助金额:
$ 81.66万 - 项目类别:
Cooperative Agreement
Doctoral Dissertation Research: How New Legal Doctrine Shapes Human-Environment Relations
博士论文研究:新法律学说如何塑造人类与环境的关系
- 批准号:
2315219 - 财政年份:2024
- 资助金额:
$ 81.66万 - 项目类别:
Standard Grant
Collaborative Research: Non-Linearity and Feedbacks in the Atmospheric Circulation Response to Increased Carbon Dioxide (CO2)
合作研究:大气环流对二氧化碳 (CO2) 增加的响应的非线性和反馈
- 批准号:
2335762 - 财政年份:2024
- 资助金额:
$ 81.66万 - 项目类别:
Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335802 - 财政年份:2024
- 资助金额:
$ 81.66万 - 项目类别:
Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335801 - 财政年份:2024
- 资助金额:
$ 81.66万 - 项目类别:
Standard Grant
Collaborative Research: Holocene biogeochemical evolution of Earth's largest lake system
合作研究:地球最大湖泊系统的全新世生物地球化学演化
- 批准号:
2336132 - 财政年份:2024
- 资助金额:
$ 81.66万 - 项目类别:
Standard Grant
CyberCorps Scholarship for Service: Building Research-minded Cyber Leaders
CyberCorps 服务奖学金:培养具有研究意识的网络领导者
- 批准号:
2336409 - 财政年份:2024
- 资助金额:
$ 81.66万 - 项目类别:
Continuing Grant














{{item.name}}会员




