EAGER: All-Optical Recording of Neural Activity by Excitonic Photoluminescence in 2D Optoelectronic Materials
EAGER:通过二维光电材料中的激子光致发光对神经活动进行全光学记录
基本信息
- 批准号:2139416
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-15 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Understanding the functions of brain circuits and how information is processed in the brain are instrumental for the development of effective treatments for neurological disorders such as epilepsy and Alzheimer’s disease. Recording of brain activity on very fast time scales with cellular level details is the “Holy Grail” for deciphering how the brain operates. Electrical recording is the state-of-the-art for detection of fast brain activity. However, it is invasive for the brain tissue and lacks the required cellular level detail over large areas. Here, as an alternative, the research team proposes to explore voltage sensitive light emission from an emerging class of ultrathin semiconducting materials. This transformative approach can potentially offer recording of very fast brain activity with cellular detail utilizing an optical microscope. If successful, the proposed work will help maintain the leadership of the US in neuroscience research. Over the course of the proposed work, doctoral and undergraduate students will be trained on this technology. Furthermore, the results will be disseminated at national and international conferences. High school students from underrepresented groups and their families will be engaged through UCSD Science and Engineering with the Family programs. The project will also provide research internship opportunities for undergraduate students through the “Summer Internship" program at UCSD.Understanding the functions of brain circuits and investigating information processing in the brain requires recording neural activity with high spatial and temporal resolution across large areas. Although electrophysiology has been the most widely used tool in neuroscience, it does not offer the spatial resolution and scalability to decipher information processing in distributed networks of the brain. This proposal presents a transformative technology dubbed nanosheet voltage imaging for all-optical large-scale monitoring of electrical activity of neuron populations. The primary focus of the proposed research will be the comprehensive investigation of voltage sensitivity of quantum-confined photoluminescence in emerging low dimensional semiconductor materials. Radiative emission lifetime of several picoseconds in these direct bandgap semiconductors, potentially enable optical detection of neural activity with an extraordinary temporal resolution while maintaining diffraction limited spatial resolution. If successful, this study will lay the groundwork for a radically new electrophysiology tool without the invasiveness of electrodes or electrical wires, by employing the noninvasiveness and practicality of optical imaging, to directly image voltages generated by single neurons and neuronal microcircuits at multiple spatial and temporal scales.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
了解大脑回路的功能以及信息在大脑中的处理方式有助于开发有效治疗癫痫和阿尔茨海默病等神经系统疾病的方法。在非常快的时间尺度上用细胞水平的细节记录大脑活动是破译大脑如何运作的“圣杯”。电记录是检测快速大脑活动的最新技术。然而,它对脑组织是侵入性的,并且在大面积上缺乏所需的细胞水平细节。在这里,作为一种替代方案,研究小组建议探索来自新兴的半导体材料的电压敏感光发射。这种变革性的方法可以利用光学显微镜记录非常快速的大脑活动和细胞细节。如果成功,这项工作将有助于保持美国在神经科学研究中的领导地位。在拟议的工作过程中,将对博士生和本科生进行这项技术的培训。此外,还将在国家和国际会议上传播结果。来自代表性不足群体的高中生及其家庭将通过UCSD科学与工程与家庭计划参与。该项目还将通过UCSD的“暑期实习”计划为本科生提供研究实习机会。了解大脑回路的功能和调查大脑中的信息处理需要在大面积上以高空间和时间分辨率记录神经活动。虽然电生理学已经是神经科学中使用最广泛的工具,但它并不提供空间分辨率和可扩展性来破译大脑分布式网络中的信息处理。该提案提出了一种称为纳米片电压成像的变革性技术,用于全光学大规模监测神经元群体的电活动。拟议的研究的主要重点将是在新兴的低维半导体材料的量子限制光致发光的电压灵敏度的全面调查。在这些直接带隙半导体中的几皮秒的辐射发射寿命,潜在地使得能够以非凡的时间分辨率对神经活动进行光学检测,同时保持衍射限制的空间分辨率。如果成功的话,这项研究将为一种全新的电生理学工具奠定基础,这种工具没有电极或电线的侵入性,通过采用光学成像的非侵入性和实用性,在多个空间和时间尺度上直接成像单个神经元和神经元微电路产生的电压。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Azimuthally Polarized and Unidirectional Excitonic Emission from Deep Subwavelength Transition Metal Dichalcogenide Annular Heterostructures
- DOI:10.1021/acsphotonics.1c01033
- 发表时间:2021-09
- 期刊:
- 影响因子:7
- 作者:Xingwang Zhang;Wenzhuo Huang;Chawina De-Eknamkul;Kedi Wu;Meng-qiang Zhao;S. Tongay;A. T. Charlie Johnson;E. Cubukcu
- 通讯作者:Xingwang Zhang;Wenzhuo Huang;Chawina De-Eknamkul;Kedi Wu;Meng-qiang Zhao;S. Tongay;A. T. Charlie Johnson;E. Cubukcu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ertugrul Cubukcu其他文献
Trionic all-optical biological voltage sensing via quantum statistics
通过量子统计的 Trionic 全光生物电压传感
- DOI:
10.1038/s41566-025-01637-w - 发表时间:
2025-03-03 - 期刊:
- 影响因子:32.900
- 作者:
Yundong Ren;Chawina De-Eknamkul;Fengyi Sun;Mehrdad Ramezani;Gisselle Gonzalez;Wenzhuo Huang;Jake H. Schwab;Madison N. Wilson;Adam J. Engler;Duygu Kuzum;Ertugrul Cubukcu - 通讯作者:
Ertugrul Cubukcu
Ertugrul Cubukcu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ertugrul Cubukcu', 18)}}的其他基金
Nanoantenna Optomechanics: Forces, Devices, and Sensors
纳米天线光力学:力、设备和传感器
- 批准号:
1632797 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Nanoantenna Optomechanics: Forces, Devices, and Sensors
纳米天线光力学:力、设备和传感器
- 批准号:
1408139 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似海外基金
Tools and Techniques for Electrical and Optical Stimulation and Recording from the Nervous System
神经系统电和光刺激和记录的工具和技术
- 批准号:
RGPIN-2018-04323 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
GOALI: Advancement of Heat-Assisted Magnetic Recording Enabled by Time-Resolved Magneto-Optical Kerr Effect Metrology
GOALI:时间分辨磁光克尔效应计量技术推动热辅助磁记录的进步
- 批准号:
2226579 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Optical neural motes to enable high density recording through intact dura in a nonhuman primate
光学神经微粒可通过非人类灵长类动物的完整硬脑膜进行高密度记录
- 批准号:
10516965 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Challenge to propose and demonstrate racetrack memory for direct optical magnetic recording with high-speed optical communication light
提出并演示用于高速光通信光直接光磁记录的赛道存储器的挑战
- 批准号:
21K18735 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Adaptive optical microscopy for high-accuracy recording of neural activity in vivo
用于高精度记录体内神经活动的自适应光学显微镜
- 批准号:
10543177 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Label-free Optical Recording of Neuroelectric Activities
神经电活动的无标记光学记录
- 批准号:
10190148 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Label-free Optical Recording of Neuroelectric Activities
神经电活动的无标记光学记录
- 批准号:
10361478 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别: