Collaborative Research: Honest and Robust Inference with High Dimensional Data

协作研究:利用高维数据进行诚实而稳健的推理

基本信息

  • 批准号:
    2139604
  • 负责人:
  • 金额:
    $ 19.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2024-03-31
  • 项目状态:
    已结题

项目摘要

Modern data analysis in economics and other sciences often involves situations in which researchers are interested in making predictions about or explaining the behavior of many individuals; researchers may also be interested in how a single factor affects an outcome but have to include several other factors in explaining the outcome of interest. Testing for statistical uncertainty surrounding the measured effects in these situations is difficult and existing methods do not provide precise and efficient ways to measure this uncertainty. This research project will develop new and improved methods for accessing statistical uncertainty associated with effect measurements in both situations. These situations arise routinely in economics and other social science research that addressing many policy questions, and accurate methods for assessing uncertainty are important for providing good policy recommendations. The results of this research project will help improve the quality of policy evaluation and statistical prediction and as result, provide policy makers with better advice. This will contribute to better policy outcomes, hence foster faster economic growth in the US.This research project will develop new methods to test statistical uncertainty in high-dimension data estimation in two settings. In the first setting, we develop a general method for constructing intervals that satisfy an average coverage property: the intervals cover a prespecified fraction (95%, say) of the true effects on average. Focusing on average coverage allows us to form intervals that automatically reflect efficiency gains from data-driven regularization, including empirical Bayes methods, and estimators of a regression function based on machine learning techniques. Such gains are not possible under the usual notion of coverage, under which a coverage guarantee is required for each effect individually, not just on average. In the second setting, we focus on the usual notion of coverage. To obtain informative confidence intervals, we exploit a priori restrictions on the magnitude of the control coefficients. We show that our construction enjoys several optimality and near-optimality properties. The results of this research will improve the quality of policy advice and as a result increase the rate of economic growth in the US.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
经济学和其他科学中的现代数据分析通常涉及这样的情况:研究人员对预测或解释许多人的行为感兴趣;研究人员也可能对单个因素如何影响结果感兴趣,但在解释感兴趣的结果时,必须包括其他几个因素。在这些情况下,测试围绕测量的影响的统计不确定性是困难的,现有方法没有提供精确和有效的方法来衡量这种不确定性。这一研究项目将开发新的和改进的方法,以获取与这两种情况下的效果测量相关的统计不确定性。这些情况经常出现在经济学和其他社会科学研究中,这些研究涉及许多政策问题,而准确评估不确定性的方法对于提供良好的政策建议非常重要。本研究项目的成果将有助于提高政策评估和统计预测的质量,从而为政策制定者提供更好的建议。这将有助于更好的政策结果,从而促进美国更快的经济增长。本研究项目将开发新的方法,在两个背景下测试高维数据估计的统计不确定性。在第一个设置中,我们开发了一种构造满足平均覆盖属性的区间的一般方法:这些区间平均覆盖真实效果的预定分数(比如95%)。关注平均覆盖率允许我们形成区间,自动反映数据驱动的正则化的效率收益,包括经验贝叶斯方法和基于机器学习技术的回归函数估计器。在通常的覆盖范围概念下,这种收益是不可能的,在这种概念下,每种影响都需要单独的覆盖保证,而不仅仅是平均而言。在第二个设置中,我们将重点放在通常的覆盖概念上。为了得到信息可信区间,我们利用了对控制系数大小的先验限制。我们证明了我们的构造具有几个最优性和近最优性。这项研究的结果将提高政策建议的质量,从而提高美国的经济增长率。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Timothy Armstrong其他文献

Development of the World Health Organization Global Physical Activity Questionnaire (GPAQ)
  • DOI:
    10.1007/s10389-006-0024-x
  • 发表时间:
    2006-03-02
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Timothy Armstrong;Fiona Bull
  • 通讯作者:
    Fiona Bull
Determination of aquifer properties and heterogeneity in a large coastal sand mass : Bribie Island, Southeast Queensland
确定大型沿海沙体中的含水层特性和异质性:布里比岛,昆士兰州东南部
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Timothy Armstrong
  • 通讯作者:
    Timothy Armstrong

Timothy Armstrong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Timothy Armstrong', 18)}}的其他基金

Collaborative Research: Honest and Robust Inference with High Dimensional Data
协作研究:利用高维数据进行诚实而稳健的推理
  • 批准号:
    2049765
  • 财政年份:
    2021
  • 资助金额:
    $ 19.4万
  • 项目类别:
    Standard Grant
Collaborative Research: Honest Inference and Efficiency Bounds for Nonparametric Regression and Approximate Moment Condition Models
协作研究:非参数回归和近似矩条件模型的诚实推理和效率界限
  • 批准号:
    1628939
  • 财政年份:
    2016
  • 资助金额:
    $ 19.4万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348998
  • 财政年份:
    2025
  • 资助金额:
    $ 19.4万
  • 项目类别:
    Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348999
  • 财政年份:
    2025
  • 资助金额:
    $ 19.4万
  • 项目类别:
    Standard Grant
Collaborative Research: Investigating Southern Ocean Sea Surface Temperatures and Freshening during the Late Pliocene and Pleistocene along the Antarctic Margin
合作研究:调查上新世晚期和更新世沿南极边缘的南大洋海面温度和新鲜度
  • 批准号:
    2313120
  • 财政年份:
    2024
  • 资助金额:
    $ 19.4万
  • 项目类别:
    Standard Grant
NSF Engines Development Award: Utilizing space research, development and manufacturing to improve the human condition (OH)
NSF 发动机发展奖:利用太空研究、开发和制造来改善人类状况(OH)
  • 批准号:
    2314750
  • 财政年份:
    2024
  • 资助金额:
    $ 19.4万
  • 项目类别:
    Cooperative Agreement
Doctoral Dissertation Research: How New Legal Doctrine Shapes Human-Environment Relations
博士论文研究:新法律学说如何塑造人类与环境的关系
  • 批准号:
    2315219
  • 财政年份:
    2024
  • 资助金额:
    $ 19.4万
  • 项目类别:
    Standard Grant
Collaborative Research: Non-Linearity and Feedbacks in the Atmospheric Circulation Response to Increased Carbon Dioxide (CO2)
合作研究:大气环流对二氧化碳 (CO2) 增加的响应的非线性和反馈
  • 批准号:
    2335762
  • 财政年份:
    2024
  • 资助金额:
    $ 19.4万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335802
  • 财政年份:
    2024
  • 资助金额:
    $ 19.4万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335801
  • 财政年份:
    2024
  • 资助金额:
    $ 19.4万
  • 项目类别:
    Standard Grant
Collaborative Research: Holocene biogeochemical evolution of Earth's largest lake system
合作研究:地球最大湖泊系统的全新世生物地球化学演化
  • 批准号:
    2336132
  • 财政年份:
    2024
  • 资助金额:
    $ 19.4万
  • 项目类别:
    Standard Grant
CyberCorps Scholarship for Service: Building Research-minded Cyber Leaders
Cyber​​Corps 服务奖学金:培养具有研究意识的网络领导者
  • 批准号:
    2336409
  • 财政年份:
    2024
  • 资助金额:
    $ 19.4万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了