Symbolic Powers and p-Derivations
符号幂和 p 导数
基本信息
- 批准号:2140355
- 负责人:
- 金额:$ 16.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This is a project in commutative algebra, with connections to algebraic geometry, combinatorics, and arithmetic geometry. The research centers on the theme of symbolic powers, an active topic of research with connections to virtually all aspects of commutative algebra. This project aims to resolve two questions, on comparing the geometric notion of symbolic powers with the algebraic notion of natural powers, and on the application of the differential algebraic notion of p-derivations to commutative algebra. The investigator will direct undergraduate research experiences and organize a graduate workshop in commutative algebra.The unifying theme of this project is the study of symbolic powers of ideals. The research focuses primarily on two questions: the containment problem and applications of p-derivations to commutative algebra. While ideals in a polynomial ring correspond to the polynomials that vanish on a certain variety in affine space, their symbolic powers consist of the polynomials that vanish to a certain order on the given variety. This natural geometric notion has an algebraic description coming from the theory of primary decomposition, an ideal-theoretic version of the fundamental theorem of arithmetic. This is an old, rich, and ubiquitous topic, yet there is an abundance of questions about symbolic powers that are both easy to phrase and very difficult to solve. The containment problem attempts to compare symbolic powers, a natural geometric notion, with ordinary powers, a natural algebraic notion. This relates to other interesting questions, such as determining the minimal degrees of polynomials vanishing on a given variety. Another part of the project is to discover new connections between p-derivations and commutative algebra, with an eye towards a new singularity theory in mixed characteristic that combines p-derivations with differential operators in the spirit of the theory of F-singularities and its connections to D-modules.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这是一个交换代数的项目,与代数几何,组合数学和算术几何有关。研究中心的主题是象征权力,一个活跃的研究课题,几乎所有方面的交换代数。这个项目的目的是解决两个问题,比较几何概念的符号权力与代数概念的自然权力,并在应用程序的微分代数概念的p-导子交换代数。研究员将指导本科生的研究经验,并组织交换代数的研究生研讨会。该项目的统一主题是研究理想的象征力量。研究主要集中在两个问题:包含问题和p-导子在交换代数中的应用。虽然多项式环中的理想对应于仿射空间中在某个簇上为零的多项式,但它们的符号幂由在给定簇上为某个阶的多项式组成。这个自然的几何概念有一个来自初等分解理论的代数描述,初等分解理论是算术基本定理的理想理论版本。这是一个古老的、丰富的、无处不在的话题,然而,关于象征性权力的问题有很多,既容易措辞,又很难解决。包容问题试图比较符号幂(一种自然的几何概念)和普通幂(一种自然的代数概念)。这涉及到其他有趣的问题,如确定最小程度的多项式消失在一个给定的品种。该项目的另一部分是发现p-导子和交换代数之间的新联系,着眼于一个新的奇异性理论的混合特性,结合p-导子与微分算子的精神,F-奇异性理论及其连接到D-该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
CONSTRUCTING NONPROXY SMALL TEST MODULES FOR THE COMPLETE INTERSECTION PROPERTY
- DOI:10.1017/nmj.2021.7
- 发表时间:2020-09
- 期刊:
- 影响因子:0.8
- 作者:Benjamin Briggs;Eloísa Grifo;Josh Pollitz
- 通讯作者:Benjamin Briggs;Eloísa Grifo;Josh Pollitz
Demailly's Conjecture and the containment problem
德迈利猜想和遏制问题
- DOI:10.1016/j.jpaa.2021.106863
- 发表时间:2022
- 期刊:
- 影响因子:0.8
- 作者:Bisui, Sankhaneel;Grifo, Eloísa;Hà, Huy Tài;Nguyễn, Thái Thành
- 通讯作者:Nguyễn, Thái Thành
Symbolic power containments in singular rings in positive characteristic
奇异环中的象征性权力遏制具有积极特征
- DOI:10.1007/s00229-021-01359-7
- 发表时间:2023
- 期刊:
- 影响因子:0.6
- 作者:Grifo, Eloísa;Ma, Linquan;Schwede, Karl
- 通讯作者:Schwede, Karl
A uniform Chevalley theorem for direct summands of polynomial rings in mixed characteristic
混合特征多项式环直接被加数的一致Chevalley定理
- DOI:10.1007/s00209-022-03035-2
- 发表时间:2022
- 期刊:
- 影响因子:0.8
- 作者:De Stefani, Alessandro;Grifo, Eloísa;Jeffries, Jack
- 通讯作者:Jeffries, Jack
Lower Bounds on Betti Numbers
- DOI:10.1007/978-3-030-89694-2_2
- 发表时间:2021-08
- 期刊:
- 影响因子:0
- 作者:Adam Boocher;Eloísa Grifo
- 通讯作者:Adam Boocher;Eloísa Grifo
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eloísa Grifo其他文献
A stable version of Harbourne's Conjecture and the containment problem for space monomial curves
哈伯恩猜想的稳定版本和空间单项式曲线的包含问题
- DOI:
10.1016/j.jpaa.2020.106435 - 发表时间:
2018 - 期刊:
- 影响因子:0.8
- 作者:
Eloísa Grifo - 通讯作者:
Eloísa Grifo
A Zariski--Nagata theorem for smooth ℤ-algebras
A Zariski--光滑 ℤ-代数的永田定理
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Alessandro De Stefani;Eloísa Grifo;J. Jeffries - 通讯作者:
J. Jeffries
Expected Resurgence of Ideals Defining Gorenstein Rings
定义 Gorenstein 戒指的理想的预期复兴
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Eloísa Grifo;C. Huneke;Vivek Mukundan - 通讯作者:
Vivek Mukundan
Symbolic powers of ideals defining F-pure and strongly F-regular rings
定义 F 纯环和强 F 正则环的理想的符号幂
- DOI:
10.1093/imrn/rnx213 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Eloísa Grifo;C. Huneke - 通讯作者:
C. Huneke
Eloísa Grifo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eloísa Grifo', 18)}}的其他基金
CAREER: Problems in Commutative and Homological algebra
职业:交换代数和同调代数问题
- 批准号:
2236983 - 财政年份:2023
- 资助金额:
$ 16.29万 - 项目类别:
Continuing Grant
相似海外基金
Paths to primacy: How rising powers win domination in Asia, 1500-present
通往霸主之路:崛起中的大国如何赢得亚洲统治地位(1500 年以来)
- 批准号:
FT230100547 - 财政年份:2024
- 资助金额:
$ 16.29万 - 项目类别:
ARC Future Fellowships
Reforming the Law and Procedures in relation to the Lasting Powers of Attorney (LPA) System
改革与持久授权书(LPA)制度有关的法律和程序
- 批准号:
2738729 - 财政年份:2022
- 资助金额:
$ 16.29万 - 项目类别:
Studentship
Powers of Edge Ideals
边缘理想的力量
- 批准号:
574684-2022 - 财政年份:2022
- 资助金额:
$ 16.29万 - 项目类别:
University Undergraduate Student Research Awards
Powers in Commutative Algebra: Approaches, Properties, and Applications
交换代数的幂:方法、性质和应用
- 批准号:
RGPIN-2018-05004 - 财政年份:2022
- 资助金额:
$ 16.29万 - 项目类别:
Discovery Grants Program - Individual
Separation of Powers beyond the State in the Realization of Human Rights Treaties
在实现人权条约方面超越国家的权力分立
- 批准号:
22K13291 - 财政年份:2022
- 资助金额:
$ 16.29万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
R.E.N - A platform that powers potential
R.E.N - 激发潜力的平台
- 批准号:
10045656 - 财政年份:2022
- 资助金额:
$ 16.29万 - 项目类别:
Collaborative R&D
Asymptotic growth of symbolic powers, mixed multiplicities, and convex bodies
符号幂、混合多重性和凸体的渐近增长
- 批准号:
2303605 - 财政年份:2022
- 资助金额:
$ 16.29万 - 项目类别:
Standard Grant
Small States' use of law of the sea litigation against greater powers
小国利用海洋法对抗大国
- 批准号:
FT210100186 - 财政年份:2022
- 资助金额:
$ 16.29万 - 项目类别:
ARC Future Fellowships
Perfect powers in elliptic divisibility sequences
椭圆整除序列的完美幂
- 批准号:
2604766 - 财政年份:2021
- 资助金额:
$ 16.29万 - 项目类别:
Studentship
Prevention of Environmental Harm related to Armed Conflict: Actual Proof of the "Due Diligence" Obligation of Billigerent Powers, Companies and their Jurisdictional States
预防与武装冲突有关的环境损害:不同国家、公司及其管辖国家“尽职”义务的实际证明
- 批准号:
21K01172 - 财政年份:2021
- 资助金额:
$ 16.29万 - 项目类别:
Grant-in-Aid for Scientific Research (C)