Collaborative Research: Informing River Corridor Transport Modeling by Harnessing Community Data and Physics-Aware Machine Learning
合作研究:通过利用社区数据和物理感知机器学习为河流走廊交通建模提供信息
基本信息
- 批准号:2141503
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
River corridors, including their adjacent and underlying sediments, are ecosystems where waters from different sources mix. This mixing controls the fate of a multitude of dissolved solutes, such as nutrients essential to the ecosystem, dissolved minerals from natural weathering, pharmaceuticals from wastewater treatment plant discharge, and contaminants from nearby sources. Practically useful computer models of how solutes are transported, including how they are exchanged back and forth between riverbed sediments and the river itself, are needed to understand water quality in rivers. Recent research suggests that these transport processes are missed by state-of-the-art computer models. This project will develop a general approach to building adaptable computer models based on recently developed tools in mathematical modeling, including artificial intelligence, to investigate how to specialize general models for particular rivers. The project will generate a large database of experimental results from river transport studies from around the globe. The database will be used to extract patterns associated with solute transport and will be disseminated broadly with the scientific community. The project team will host annual workshops to enhance database sharing, distribute educational modules on the use of artificial intelligence in hydrological sciences, and discuss approaches to standardize data collection. The goals of this project are to develop a comprehensive database of river tracer testing data for open sharing with the scientific community, and to develop and test a novel generalized model of solute transport in river corridors. The activities proposed center around the construction of a community-available, large database of tracer tests performed in streams and rivers worldwide, and its use as curricula for machine learning of model properties. Congruent data analytics will be performed to identify correlations among key variables of both river and tracer test properties, treating breakthrough curves not individually but in the tracer test sets in which they are measured. Uncertainty in experimentally measured solute concentrations will be formally addressed and used to describe model predictive power. The models selected for evaluation range from the classical transient storage model to a new model designed to address the hypothesis that residence time in the river and in the hyporheic zone both matter to exchange fluxes. Both conventional inverse modeling and machine learning tools will be applied in dual model calibration tasks, bringing uniquely powerful physics-informed neural networks to bear on this challenging problem.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
河流廊道,包括其邻近和下伏沉积物,是不同来源的沃茨混合的生态系统。这种混合控制了大量溶解溶质的命运,例如生态系统所必需的营养物质,自然风化的溶解矿物质,废水处理厂排放的药物以及附近来源的污染物。为了了解河流的水质,需要建立实用的计算机模型来研究溶质是如何传输的,包括它们是如何在河床沉积物和河流之间来回交换的。 最近的研究表明,这些运输过程是错过了最先进的计算机模型。该项目将开发一种通用方法,根据最近开发的数学建模工具(包括人工智能)建立适应性强的计算机模型,以研究如何为特定河流专门建立通用模型。该项目将产生一个大型数据库,其中包括来自地球仪的河流运输研究的实验结果。该数据库将用于提取与溶质迁移有关的模式,并将在科学界广泛传播。该项目小组将举办年度研讨会,以加强数据库共享,分发关于在水文科学中使用人工智能的教育模块,并讨论数据收集标准化的方法。该项目的目标是开发一个全面的河流示踪剂测试数据库,与科学界开放共享,并开发和测试一个新的通用模型的溶质在河流走廊传输。拟议的活动围绕社区可用的,在世界各地的溪流和河流中进行示踪剂测试的大型数据库的建设,并将其用作模型属性的机器学习课程。将进行一致性数据分析,以确定河流和示踪剂测试特性的关键变量之间的相关性,不单独处理穿透曲线,而是在测量它们的示踪剂测试组中处理穿透曲线。实验测量的溶质浓度的不确定性将正式解决,并用于描述模型的预测能力。选择用于评估的模型范围从经典的瞬态存储模型,以解决的假设,在河流中的停留时间和在潜流区都重要的交换通量的一个新的模型。 传统的逆向建模和机器学习工具都将应用于双模型校准任务,使独特强大的物理信息神经网络承担这一具有挑战性的问题。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexandre Tartakovsky其他文献
Alexandre Tartakovsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Informing River Corridor Transport Modeling by Harnessing Community Data and Physics-Aware Machine Learning
合作研究:通过利用社区数据和物理感知机器学习为河流走廊交通建模提供信息
- 批准号:
2142691 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Informing River Corridor Transport Modeling by Harnessing Community Data and Physics-Aware Machine Learning
合作研究:通过利用社区数据和物理感知机器学习为河流走廊交通建模提供信息
- 批准号:
2142165 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Informing River Corridor Transport Modeling by Harnessing Community Data and Physics-Aware Machine Learning
合作研究:通过利用社区数据和物理感知机器学习为河流走廊交通建模提供信息
- 批准号:
2142686 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
NSFDEB-NERC: Collaborative Research: Informing population models with evolutionary theory to infer species' conservation status
NSFDEB-NERC:合作研究:利用进化理论为种群模型提供信息以推断物种的保护状态
- 批准号:
1952546 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Toward Informing Users About Algorithmic Fairness
EAGER:协作研究:向用户通报算法公平性
- 批准号:
1844462 - 财政年份:2018
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Toward Informing Users About Algorithmic Fairness
EAGER:协作研究:向用户通报算法公平性
- 批准号:
1844518 - 财政年份:2018
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
NSFDEB-NERC: Collaborative Research: Informing population models with evolutionary theory to infer species' conservation status
NSFDEB-NERC:合作研究:利用进化理论为种群模型提供信息以推断物种的保护状态
- 批准号:
1555729 - 财政年份:2016
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
NSFDEB-NERC: Collaborative Research: Informing population models with evolutionary theory to infer species' conservation status
NSFDEB-NERC:合作研究:利用进化理论为种群模型提供信息以推断物种的保护状态
- 批准号:
1556779 - 财政年份:2016
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Coordinated Experiments and Simulations of Near-Surface Turbulent Flow over Barchan Dunes: Informing Models of Dune Migration and Interaction
合作研究:新月形沙丘近地表湍流的协调实验和模拟:为沙丘迁移和相互作用模型提供信息
- 批准号:
1604155 - 财政年份:2016
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Coordinated Experiments and Simulations of Near-Surface Turbulent Flow over Barchan Dunes: Informing Models of Dune Migration and Interaction
合作研究:新月形沙丘近地表湍流的协调实验和模拟:为沙丘迁移和相互作用模型提供信息
- 批准号:
1603254 - 财政年份:2016
- 资助金额:
$ 25万 - 项目类别:
Standard Grant