Collaborative Research: Informing River Corridor Transport Modeling by Harnessing Community Data and Physics-Aware Machine Learning
合作研究:通过利用社区数据和物理感知机器学习为河流走廊交通建模提供信息
基本信息
- 批准号:2142691
- 负责人:
- 金额:$ 25.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
River corridors, including their adjacent and underlying sediments, are ecosystems where waters from different sources mix. This mixing controls the fate of a multitude of dissolved solutes, such as nutrients essential to the ecosystem, dissolved minerals from natural weathering, pharmaceuticals from wastewater treatment plant discharge, and contaminants from nearby sources. Practically useful computer models of how solutes are transported, including how they are exchanged back and forth between riverbed sediments and the river itself, are needed to understand water quality in rivers. Recent research suggests that these transport processes are missed by state-of-the-art computer models. This project will develop a general approach to building adaptable computer models based on recently developed tools in mathematical modeling, including artificial intelligence, to investigate how to specialize general models for particular rivers. The project will generate a large database of experimental results from river transport studies from around the globe. The database will be used to extract patterns associated with solute transport and will be disseminated broadly with the scientific community. The project team will host annual workshops to enhance database sharing, distribute educational modules on the use of artificial intelligence in hydrological sciences, and discuss approaches to standardize data collection. The goals of this project are to develop a comprehensive database of river tracer testing data for open sharing with the scientific community, and to develop and test a novel generalized model of solute transport in river corridors. The activities proposed center around the construction of a community-available, large database of tracer tests performed in streams and rivers worldwide, and its use as curricula for machine learning of model properties. Congruent data analytics will be performed to identify correlations among key variables of both river and tracer test properties, treating breakthrough curves not individually but in the tracer test sets in which they are measured. Uncertainty in experimentally measured solute concentrations will be formally addressed and used to describe model predictive power. The models selected for evaluation range from the classical transient storage model to a new model designed to address the hypothesis that residence time in the river and in the hyporheic zone both matter to exchange fluxes. Both conventional inverse modeling and machine learning tools will be applied in dual model calibration tasks, bringing uniquely powerful physics-informed neural networks to bear on this challenging problem.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
河流走廊,包括其邻近的和下面的沉积物,是来自不同来源的水混合的生态系统。这种混合控制着大量溶解溶质的命运,如生态系统必需的营养物质、自然风化产生的溶解矿物质、废水处理厂排放的药物以及附近来源的污染物。要了解河流的水质,需要实用的计算机模型来了解溶质如何运输,包括它们如何在河床沉积物和河流本身之间来回交换。最近的研究表明,最先进的计算机模型忽略了这些运输过程。该项目将开发一种基于数学建模(包括人工智能)中最新开发的工具来建立可适应的计算机模型的通用方法,以研究如何为特定河流专门建立通用模型。该项目将从全球河流运输研究中产生一个大型实验结果数据库。该数据库将用于提取与溶质运移有关的模式,并将在科学界广泛传播。项目组将主办年度讲习班,以加强数据库共享,分发关于在水文科学中使用人工智能的教育模块,并讨论使数据收集标准化的方法。该项目的目标是开发一个全面的河流示踪剂测试数据数据库,供科学界开放共享,并开发和测试一种新的河流走廊溶质运移通用模型。拟议的活动围绕着建立一个社区可用的大型示踪剂测试数据库,该数据库在世界各地的溪流和河流中进行,并将其用作模型属性的机器学习课程。将进行一致数据分析,以确定河流和示踪剂测试特性的关键变量之间的相关性,不是单独处理突破曲线,而是在测量它们的示踪剂测试集中处理。实验测量的溶质浓度的不确定性将被正式处理,并用于描述模型的预测能力。所选择的模型范围从经典的暂态存储模型到新的模型,该模型旨在解决以下假设:河流和潜流带中的滞留时间都与交换通量有关。传统的逆向建模和机器学习工具都将应用于双重模型校准任务,将独特强大的物理信息神经网络应用于这一具有挑战性的问题。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ricardo Gonzalez-Pinzon其他文献
Ricardo Gonzalez-Pinzon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ricardo Gonzalez-Pinzon', 18)}}的其他基金
How far downstream do wildfire disturbances propagate in fluvial networks?
野火扰动在河流网络中向下游传播多远?
- 批准号:
2054444 - 财政年份:2021
- 资助金额:
$ 25.42万 - 项目类别:
Standard Grant
Collaborative Research: How do interactions of transport and stoichiometry maximize stream nutrient retention?
合作研究:运输和化学计量的相互作用如何最大限度地保留河流养分?
- 批准号:
1642399 - 财政年份:2017
- 资助金额:
$ 25.42万 - 项目类别:
Continuing Grant
Nutrient dynamics along a river continuum: combining sensor data, experiments, and time series analyses to identify local to watershed scale drivers of nutrient cycling
沿河流连续体的养分动态:结合传感器数据、实验和时间序列分析来识别养分循环的局部到流域规模的驱动因素
- 批准号:
1707042 - 财政年份:2017
- 资助金额:
$ 25.42万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Informing River Corridor Transport Modeling by Harnessing Community Data and Physics-Aware Machine Learning
合作研究:通过利用社区数据和物理感知机器学习为河流走廊交通建模提供信息
- 批准号:
2141503 - 财政年份:2022
- 资助金额:
$ 25.42万 - 项目类别:
Standard Grant
Collaborative Research: Informing River Corridor Transport Modeling by Harnessing Community Data and Physics-Aware Machine Learning
合作研究:通过利用社区数据和物理感知机器学习为河流走廊交通建模提供信息
- 批准号:
2142165 - 财政年份:2022
- 资助金额:
$ 25.42万 - 项目类别:
Standard Grant
Collaborative Research: Informing River Corridor Transport Modeling by Harnessing Community Data and Physics-Aware Machine Learning
合作研究:通过利用社区数据和物理感知机器学习为河流走廊交通建模提供信息
- 批准号:
2142686 - 财政年份:2022
- 资助金额:
$ 25.42万 - 项目类别:
Standard Grant
NSFDEB-NERC: Collaborative Research: Informing population models with evolutionary theory to infer species' conservation status
NSFDEB-NERC:合作研究:利用进化理论为种群模型提供信息以推断物种的保护状态
- 批准号:
1952546 - 财政年份:2019
- 资助金额:
$ 25.42万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Toward Informing Users About Algorithmic Fairness
EAGER:协作研究:向用户通报算法公平性
- 批准号:
1844462 - 财政年份:2018
- 资助金额:
$ 25.42万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Toward Informing Users About Algorithmic Fairness
EAGER:协作研究:向用户通报算法公平性
- 批准号:
1844518 - 财政年份:2018
- 资助金额:
$ 25.42万 - 项目类别:
Standard Grant
NSFDEB-NERC: Collaborative Research: Informing population models with evolutionary theory to infer species' conservation status
NSFDEB-NERC:合作研究:利用进化理论为种群模型提供信息以推断物种的保护状态
- 批准号:
1555729 - 财政年份:2016
- 资助金额:
$ 25.42万 - 项目类别:
Standard Grant
NSFDEB-NERC: Collaborative Research: Informing population models with evolutionary theory to infer species' conservation status
NSFDEB-NERC:合作研究:利用进化理论为种群模型提供信息以推断物种的保护状态
- 批准号:
1556779 - 财政年份:2016
- 资助金额:
$ 25.42万 - 项目类别:
Standard Grant
Collaborative Research: Coordinated Experiments and Simulations of Near-Surface Turbulent Flow over Barchan Dunes: Informing Models of Dune Migration and Interaction
合作研究:新月形沙丘近地表湍流的协调实验和模拟:为沙丘迁移和相互作用模型提供信息
- 批准号:
1604155 - 财政年份:2016
- 资助金额:
$ 25.42万 - 项目类别:
Standard Grant
Collaborative Research: Coordinated Experiments and Simulations of Near-Surface Turbulent Flow over Barchan Dunes: Informing Models of Dune Migration and Interaction
合作研究:新月形沙丘近地表湍流的协调实验和模拟:为沙丘迁移和相互作用模型提供信息
- 批准号:
1603254 - 财政年份:2016
- 资助金额:
$ 25.42万 - 项目类别:
Standard Grant