CAREER: Wire Arc Additive Manufacturing of Molybdenum Alloys for High-temperature Applications: Residual Stresses and Porosity Considering Ductile-to-brittle Transition Temperature
职业:用于高温应用的钼合金的电弧增材制造:考虑延性到脆性转变温度的残余应力和孔隙率
基本信息
- 批准号:2141905
- 负责人:
- 金额:$ 52.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-01 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Refractory metals such as Molybdenum (Mo) based alloys have a great potential for applications in harsh environments, because of their high melting point. However, Mo alloys have several inherent drawbacks such as low ductility and a tendency of oxidation and cracking, which are adversely augmented when they are produced by additive manufacturing, due to non-equilibrium processing phenomena. This results in several complex technical blockades that hinder a broader adoption of additive manufacturing of Mo alloys in the industry. This Faculty Early Career Development (CAREER) project aims at fundamental research of wire arc additive manufacturing (WAAM) for Mo alloy structures, and will explore and elucidate the root causes of processing defects and their effects on part thermomechanical performance. If successful, the research will directly impact the Nation’s economic welfare and energy security. For example, the energy efficiency of land-based power plants could be improved and their carbon footprint decreased by using Mo alloys for turbine blades. In addition, the project will enhance the existing manufacturing curricula with data analytics components, provide undergraduate/graduate student with internship opportunities at national laboratories, and run hands-on manufacturing experiences for K-12 students. The outreach activities will enhance the education and training of next-generation STEM leaders in advanced manufacturing and foster inclusions of underrepresented groups.The overarching research goal of this CAREER award is to understand the underlying mechanisms of process-induced residual stresses as well as pore generation and investigate thermomechanical performances of WAAM processed Mo-alloy structures, focusing on titanium-zirconium-molybdenum alloys. The core research challenges lie on the lack of data in the physicochemical properties and complex defects development from non-equilibrium thermal cycles in layer-by-layer stacking. A combination of computational and physics-informed, data-driven models will be pursued for process understanding with experimental verifications and validations, including multi-scale material characterizations, process imaging and fatigue testing, etc. The research is expected to gain fundamental knowledge of the residual stress development and pore formation while considering the ductile-to-brittle transition temperature, and elucidate the deformation behaviors and thermomechanical performances from room to elevated temperatures, as correlated with heterogeneous microstructures, pores and oxidation. In addition, the project intends to establish a quantitative relationship between the process, signature, microstructure, property and performance, called the “design rule,” for WAAM that will ensure satisfactory fabrications of refractory alloy structures. The linkage may serve as an effective tool to potentially tailor microstructures and properties of WAAM structures with controlled and improved thermomechanical performance of final products.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
难熔金属,如钼(Mo)基合金,由于其高熔点,在恶劣的环境中具有巨大的应用潜力。然而,钼合金具有一些固有的缺陷,如塑性低,容易氧化和开裂,在添加制造时,由于非平衡加工现象,这些缺陷会得到不利的增强。这导致了几个复杂的技术障碍,阻碍了钼合金添加剂制造在该行业的广泛采用。本学院早期职业发展(CALEAR)项目旨在对钼合金结构的焊丝电弧添加剂制造(WAAM)进行基础研究,并将探索和阐明加工缺陷的根本原因及其对零件热机械性能的影响。如果研究成功,将直接影响国家的经济福利和能源安全。例如,将钼合金用于涡轮叶片可以提高陆上发电厂的能效,减少它们的碳足迹。此外,该项目将使用数据分析组件来增强现有的制造课程,为本科生/研究生提供在国家实验室的实习机会,并为K-12学生提供实践制造体验。外展活动将加强对下一代STEM领导人在先进制造方面的教育和培训,并促进代表不足的群体的包容性。这一职业奖项的主要研究目标是了解工艺诱导残余应力和气孔产生的潜在机制,并调查WAAM工艺处理的钼合金结构的热机械性能,重点是钛-锆-钼合金。研究的核心挑战在于缺乏物理化学性质的数据,以及逐层堆积过程中非平衡热循环产生的复杂缺陷。将寻求计算和物理信息、数据驱动的模型相结合的方法来理解过程,并进行实验验证和验证,包括多尺度材料表征、过程成像和疲劳测试等。这项研究有望在考虑韧性到脆性转变温度的同时获得残余应力发展和气孔形成的基础知识,并阐明从室温到高温的变形行为和热机械性能,以及与非均匀组织、气孔和氧化相关的行为。此外,该项目旨在建立WAAM的工艺、签名、微结构、性能和性能之间的定量关系,称为WAAM的“设计规则”,以确保制造出令人满意的耐火合金结构。这种联系可以作为一种有效的工具,潜在地定制WAAM结构的微观结构和性能,并控制和改善最终产品的热机械性能。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bimetallic structure of TZM and NbZr1 fabricated by wire-based directed energy deposition
- DOI:10.1016/j.matlet.2023.135605
- 发表时间:2023-11
- 期刊:
- 影响因子:3
- 作者:Sainand Jadhav;Md Abdul Karim;Duck Bong Kim
- 通讯作者:Sainand Jadhav;Md Abdul Karim;Duck Bong Kim
Materials characterization of Ti6Al4V to NbZr1 bimetallic structure fabricated by wire arc additive manufacturing
- DOI:10.1016/j.mtcomm.2023.106934
- 发表时间:2023-08
- 期刊:
- 影响因子:3.8
- 作者:Sainand Jadhav;Mahdi Sadeqi Bajestani;S. Islam;Md Abdul Karim;C. J. Kim;Ho-Jin Lee;Y. Cho;Duck Bong Kim
- 通讯作者:Sainand Jadhav;Mahdi Sadeqi Bajestani;S. Islam;Md Abdul Karim;C. J. Kim;Ho-Jin Lee;Y. Cho;Duck Bong Kim
Investigations of Microstructure and Mechanical Properties in Wire + Arc Additively Manufactured Niobium–Zirconium Alloy
电弧增材制造铌锆合金显微组织与力学性能研究
- DOI:10.1002/adem.202201633
- 发表时间:2023
- 期刊:
- 影响因子:3.6
- 作者:Islam, Saiful;Ahsan, Md. Rumman Ul;Seo, Gi-Jeong;Lee, Ho-Jin;Park, Taejoon;Pourboghrat, Farhang;Kim, Duck Bong
- 通讯作者:Kim, Duck Bong
Investigation of microstructures, defects, and mechanical properties of titanium-zirconium-molybdenum alloy manufactured by wire arc additive manufacturing
电弧增材制造钛锆钼合金的显微组织、缺陷和力学性能研究
- DOI:10.1016/j.ijrmhm.2022.106042
- 发表时间:2023
- 期刊:
- 影响因子:3.6
- 作者:Islam, Saiful;Seo, Gi-Jeong;Ahsan, Md.R.U.;Villarraga-Gómez, Herminso;Lee, Ho-Jin;Kim, Duck Bong
- 通讯作者:Kim, Duck Bong
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Duck Bong Kim其他文献
Tailoring porosity and mechanical properties of wire-based directed energy deposited molybdenum alloys through hot isostatic pressing
通过热等静压调整基于丝材的定向能量沉积钼合金的孔隙率和力学性能
- DOI:
10.1016/j.apmt.2025.102618 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:6.900
- 作者:
Md Abdul Karim;Gazi Tanvir;Sainand Jadhav;Saiful Islam;Young-Min Kim;Herminso Villarraga-Gomez;Ho-Jin Lee;Yongho Jeon;Duck Bong Kim - 通讯作者:
Duck Bong Kim
Human-in-the-loop in smart manufacturing (H-SM): A review and perspective
智能制造中的人机环(H-SM):综述与展望
- DOI:
10.1016/j.jmsy.2025.05.020 - 发表时间:
2025-10-01 - 期刊:
- 影响因子:14.200
- 作者:
Duck Bong Kim;Mahdi Sadeqi Bajestani;Ju Yeon Lee;Seung-Jun Shin;Goo-Young Kim;Seyed Mohammad Mehdi Sajadieh;Sangdo Noh - 通讯作者:
Sangdo Noh
Digital twin-based architecture for wire arc additive manufacturing using OPC UA
基于数字孪生的电弧增材制造架构(使用OPC UA)
- DOI:
10.1016/j.rcim.2024.102944 - 发表时间:
2025-08-01 - 期刊:
- 影响因子:11.400
- 作者:
Mohammad Mahruf Mahdi;Mahdi Sadeqi Bajestani;Sang Do Noh;Duck Bong Kim - 通讯作者:
Duck Bong Kim
Heat treatment effects on Inconel 625 components fabricated by wire + arc additive manufacturing (WAAM)—part 1: microstructural characterization
- DOI:
10.1007/s00170-019-03828-6 - 发表时间:
2019-05-09 - 期刊:
- 影响因子:3.100
- 作者:
A. N. M. Tanvir;Md. R. U. Ahsan;Changwook Ji;Wayne Hawkins;Brian Bates;Duck Bong Kim - 通讯作者:
Duck Bong Kim
Strength-ductility synergy through microstructural and compositional heterogeneity in directed energy deposition additive manufacturing of face-centered cubic materials
- DOI:
10.1016/j.jmrt.2024.10.253 - 发表时间:
2024-11-01 - 期刊:
- 影响因子:
- 作者:
Md R.U. Ahsan;Nadim S. Hmeidat;Saiful Islam;Xuesong Fan;Jonathan D. Poplawsky;Peter K. Liaw;Yousub Lee;Brett G. Compton;Yongho Jeon;Duck Bong Kim - 通讯作者:
Duck Bong Kim
Duck Bong Kim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Duck Bong Kim', 18)}}的其他基金
Investigations into the Design Rules for the Control of Wire Arc Additive Manufacturing
电弧增材制造控制设计规则研究
- 批准号:
2015693 - 财政年份:2020
- 资助金额:
$ 52.62万 - 项目类别:
Standard Grant
相似国自然基金
基于Arcing wire PAW的铝锂合金异质三丝合金化增材制造机理与控制
- 批准号:52305431
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Synchronous wire-powder feeding solution for plasma arc additive manufacturing of Ti2AlNb alloys
用于 Ti2AlNb 合金等离子弧增材制造的同步送丝解决方案
- 批准号:
24K17185 - 财政年份:2024
- 资助金额:
$ 52.62万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Clarification of the aluminum alloy deposition mechanism under the electromagnetic circumstance in alternate current pulsed gas metal arc process applied wire arc additive manufacturing (WAAM)
阐明交流脉冲气体金属电弧工艺应用电弧增材制造(WAAM)电磁环境下铝合金沉积机理
- 批准号:
24K17530 - 财政年份:2024
- 资助金额:
$ 52.62万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Simulative prediction of the manufacturing process in wire-arc additive manufacturing (WAAM) (T03#)
电弧增材制造 (WAAM) 制造过程的模拟预测 (T03
- 批准号:
470693600 - 财政年份:2022
- 资助金额:
$ 52.62万 - 项目类别:
Collaborative Research Centres (Transfer Project)
Multi-material robotic hybrid additive wire arc manufacturing for the energy industry
适用于能源行业的多材料机器人混合增材电弧制造
- 批准号:
577080-2022 - 财政年份:2022
- 资助金额:
$ 52.62万 - 项目类别:
Alliance Grants
CAREER: Ultrasonically Assisted Wire Arc Additive Manufacturing of Metal Matrix Nanocomposites for High-strength, Lightweight Structures
职业:用于高强度、轻质结构的金属基纳米复合材料的超声波辅助电弧增材制造
- 批准号:
2044526 - 财政年份:2021
- 资助金额:
$ 52.62万 - 项目类别:
Standard Grant
Evaluation of wire + arc additively manufactured stainless steel
电弧增材制造不锈钢的评价
- 批准号:
563558-2021 - 财政年份:2021
- 资助金额:
$ 52.62万 - 项目类别:
University Undergraduate Student Research Awards
Wire Arc Direct Energy Deposition of super alloys
超级合金的电弧直接能量沉积
- 批准号:
2426282 - 财政年份:2020
- 资助金额:
$ 52.62万 - 项目类别:
Studentship
Investigations into the Design Rules for the Control of Wire Arc Additive Manufacturing
电弧增材制造控制设计规则研究
- 批准号:
2015693 - 财政年份:2020
- 资助金额:
$ 52.62万 - 项目类别:
Standard Grant
High Productivity Wire Arc Additive Manufacturing (HPWAAM)
高生产率电弧增材制造 (HPWAAM)
- 批准号:
53610 - 财政年份:2020
- 资助金额:
$ 52.62万 - 项目类别:
Study