Investigations into the Design Rules for the Control of Wire Arc Additive Manufacturing

电弧增材制造控制设计规则研究

基本信息

  • 批准号:
    2015693
  • 负责人:
  • 金额:
    $ 22.52万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

This award advances the understanding of defect formation in wire arc additive manufacturing, leading to improved processing and greater process control. This research addresses surface waviness and nonuniform wall thickness challenges in wire arc additive manufacturing, making it acceptable for many U.S. industries, including aerospace, defense, and automotive, and thereby benefiting the nation’s economy and well-being. Wire arc additive manufacturing uses a welding arc as the energy source in making three-dimensional objects with high throughput. This process can be easily integrated with existing computer-numerical-control routers, or robot arms. Thus, the knowledge and methodology developed through this project can be directly transferred to small- and medium-sized enterprises interested in making or repairing metallic parts. Additionally, this project develops the professional skills of K-12, undergraduate, and graduate students, including women and underrepresented minorities, by training them through a unique set of integrated education and multidisciplinary research opportunities in the areas of wire arc additive manufacturing and data analytics. Accordingly, students are familiarized with emerging technology-intensive manufacturing and data science disciplines, thereby preparing a future workforce equipped with these new skills and knowledge. The two overarching research goals of this project are to (1) gain fundamental knowledge about surface waviness and effective wall thickness formation mechanisms in wire arc additive manufacturing and (2) investigate the design rules for the monitoring and control of the manufacturing process. An integrated experimental-characterization and theoretical-modeling framework are considered to achieve these goals. The surface quality of wire arc additively manufactured structures is controlled by fine-tuning and balancing the surface tension, arc force, droplet impact, gravity, buoyancy, and friction for different manufacturing conditions. The project framework consists of four components: (1) measurement and analysis of real-time process signatures (e.g., voltage and current) and visualization data of the arc, droplet, and weld pool features; (2) data measurements and analysis of defect (e.g., balling effect and voids) generation and propagation as a function of process parameters, wall thickness and inclination, and multi-bead/multilayer deposition; (3) characterization of the surface tension-based computational fluid dynamics model and its verification and validation through experiments; and (4) establishment of design rules using data-driven, low-fidelity surrogate models. Machine learning algorithms (e.g., convolutional neural network, AnoGAN, transfer learning, and reinforcement learning) are developed in detail for defect detections and classifications as well as process control. This integrated framework provides unique, transformative, and efficient opportunities to synergistically understand the arc, droplet, and weld pool characteristics and defect formation in wire arc additive manufacturing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项促进了对电弧增材制造中缺陷形成的理解,从而改进了加工和更好的过程控制。这项研究解决了电弧增材制造中的表面波纹度和壁厚不均匀的挑战,使其能够为许多美国行业所接受,包括航空航天,国防和汽车,从而有利于国家的经济和福祉。 丝弧增材制造使用焊接电弧作为能源,以高产量制造三维物体。这个过程可以很容易地与现有的计算机数控路由器或机器人手臂集成。因此,通过该项目开发的知识和方法可以直接转让给对制造或修理金属零件感兴趣的中小型企业。此外,该项目开发K-12,本科生和研究生的专业技能,包括妇女和代表性不足的少数民族,通过一套独特的综合教育和多学科研究机会,在线弧增材制造和数据分析领域进行培训。因此,学生熟悉新兴的技术密集型制造和数据科学学科,从而为未来的劳动力配备这些新技能和知识做好准备。该项目的两个首要研究目标是(1)获得关于电弧增材制造中表面波纹度和有效壁厚形成机制的基础知识,以及(2)研究制造过程监测和控制的设计规则。一个综合的实验表征和理论建模框架被认为是实现这些目标。丝弧增材制造结构的表面质量通过针对不同制造条件微调和平衡表面张力、电弧力、液滴冲击、重力、浮力和摩擦来控制。该项目框架由四个部分组成:(1)实时过程特征(例如,电压和电流)和电弧、熔滴和焊池特征的可视化数据;(2)缺陷的数据测量和分析(例如,球化效应和空隙)作为工艺参数、壁厚和倾斜度以及多珠/多层沉积的函数的产生和传播;(3)基于表面张力的计算流体动力学模型的表征及其通过实验的验证和确认;以及(4)使用数据驱动的低保真度替代模型建立设计规则。机器学习算法(例如,卷积神经网络,AnoGAN,转移学习和强化学习)详细开发了缺陷检测和分类以及过程控制。该综合框架为协同了解电弧、熔滴和焊池特性以及焊丝电弧增材制造中的缺陷形成提供了独特、变革性和高效的机会。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A functional modeling approach for quality assurance in metal additive manufacturing
  • DOI:
    10.1108/rpj-12-2018-0312
  • 发表时间:
    2021-01
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Gi-Jeong Seo;Md. R. U. Ahsan;Yousub Lee;Jong-Ho Shin;Hyun-Chul Park;D. Kim
  • 通讯作者:
    Gi-Jeong Seo;Md. R. U. Ahsan;Yousub Lee;Jong-Ho Shin;Hyun-Chul Park;D. Kim
Development of a CNN-based real-time monitoring algorithm for additively manufactured molybdenum
开发基于CNN的增材制造钼实时监测算法
  • DOI:
    10.1016/j.sna.2023.114205
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kim, Eun-Su;Lee, Dong-Hee;Seo, Gi-Jeong;Kim, Duck-Bong;Shin, Seung-Jun
  • 通讯作者:
    Shin, Seung-Jun
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Duck Bong Kim其他文献

Tailoring porosity and mechanical properties of wire-based directed energy deposited molybdenum alloys through hot isostatic pressing
通过热等静压调整基于丝材的定向能量沉积钼合金的孔隙率和力学性能
  • DOI:
    10.1016/j.apmt.2025.102618
  • 发表时间:
    2025-02-01
  • 期刊:
  • 影响因子:
    6.900
  • 作者:
    Md Abdul Karim;Gazi Tanvir;Sainand Jadhav;Saiful Islam;Young-Min Kim;Herminso Villarraga-Gomez;Ho-Jin Lee;Yongho Jeon;Duck Bong Kim
  • 通讯作者:
    Duck Bong Kim
Human-in-the-loop in smart manufacturing (H-SM): A review and perspective
智能制造中的人机环(H-SM):综述与展望
  • DOI:
    10.1016/j.jmsy.2025.05.020
  • 发表时间:
    2025-10-01
  • 期刊:
  • 影响因子:
    14.200
  • 作者:
    Duck Bong Kim;Mahdi Sadeqi Bajestani;Ju Yeon Lee;Seung-Jun Shin;Goo-Young Kim;Seyed Mohammad Mehdi Sajadieh;Sangdo Noh
  • 通讯作者:
    Sangdo Noh
Digital twin-based architecture for wire arc additive manufacturing using OPC UA
基于数字孪生的电弧增材制造架构(使用OPC UA)
  • DOI:
    10.1016/j.rcim.2024.102944
  • 发表时间:
    2025-08-01
  • 期刊:
  • 影响因子:
    11.400
  • 作者:
    Mohammad Mahruf Mahdi;Mahdi Sadeqi Bajestani;Sang Do Noh;Duck Bong Kim
  • 通讯作者:
    Duck Bong Kim
Heat treatment effects on Inconel 625 components fabricated by wire + arc additive manufacturing (WAAM)—part 1: microstructural characterization
Strength-ductility synergy through microstructural and compositional heterogeneity in directed energy deposition additive manufacturing of face-centered cubic materials
  • DOI:
    10.1016/j.jmrt.2024.10.253
  • 发表时间:
    2024-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Md R.U. Ahsan;Nadim S. Hmeidat;Saiful Islam;Xuesong Fan;Jonathan D. Poplawsky;Peter K. Liaw;Yousub Lee;Brett G. Compton;Yongho Jeon;Duck Bong Kim
  • 通讯作者:
    Duck Bong Kim

Duck Bong Kim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Duck Bong Kim', 18)}}的其他基金

CAREER: Wire Arc Additive Manufacturing of Molybdenum Alloys for High-temperature Applications: Residual Stresses and Porosity Considering Ductile-to-brittle Transition Temperature
职业:用于高温应用的钼合金的电弧增材制造:考虑延性到脆性转变温度的残余应力和孔隙率
  • 批准号:
    2141905
  • 财政年份:
    2022
  • 资助金额:
    $ 22.52万
  • 项目类别:
    Standard Grant

相似海外基金

HSI Implementation and Evaluation Project: Blending Socioeconomic-Inclusive Design into Undergraduate Computing Curricula to Build a Larger Computing Workforce
HSI 实施和评估项目:将社会经济包容性设计融入本科计算机课程,以建立更大规模的计算机队伍
  • 批准号:
    2345334
  • 财政年份:
    2024
  • 资助金额:
    $ 22.52万
  • 项目类别:
    Continuing Grant
Flexible metal-organic frameworks (MOFs) for hydrogen isotope separation: insights into smart recognition of gas molecules towards materials design
用于氢同位素分离的柔性金属有机框架(MOF):深入了解气体分子对材料设计的智能识别
  • 批准号:
    24K17650
  • 财政年份:
    2024
  • 资助金额:
    $ 22.52万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Electro-fermentation process design for efficient CO2 conversion into value-added products
电发酵工艺设计可有效地将二氧化碳转化为增值产品
  • 批准号:
    EP/Y002482/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.52万
  • 项目类别:
    Research Grant
SBIR Phase I: Methods for Embedding User Data into 3D Generative AI Computer-aided-Design Models
SBIR 第一阶段:将用户数据嵌入 3D 生成式 AI 计算机辅助设计模型的方法
  • 批准号:
    2335491
  • 财政年份:
    2024
  • 资助金额:
    $ 22.52万
  • 项目类别:
    Standard Grant
Catalyst design for converting carbon dioxide into valuable chemicals
将二氧化碳转化为有价值的化学品的催化剂设计
  • 批准号:
    DE230100357
  • 财政年份:
    2023
  • 资助金额:
    $ 22.52万
  • 项目类别:
    Discovery Early Career Researcher Award
CISE-ANR: HCC: Small: Learning to Translate Freehand Design Drawings into Parametric CAD Programs
CISE-ANR:HCC:小型:学习将手绘设计图转换为参数化 CAD 程序
  • 批准号:
    2315354
  • 财政年份:
    2023
  • 资助金额:
    $ 22.52万
  • 项目类别:
    Standard Grant
Exposure on a chip to better design aerosolised drug delivery deep into the lungs
暴露在芯片上以更好地设计深入肺部的雾化药物输送
  • 批准号:
    2879692
  • 财政年份:
    2023
  • 资助金额:
    $ 22.52万
  • 项目类别:
    Studentship
Design, synthesis, and characterization of Gs- and Gq-biased agonists of the Glucagon-like Peptide-1 Receptor (GLP-1R)
胰高血糖素样肽 1 受体 (GLP-1R) 的 Gs 和 Gq 偏向激动剂的设计、合成和表征
  • 批准号:
    10388640
  • 财政年份:
    2022
  • 资助金额:
    $ 22.52万
  • 项目类别:
Integration of Remote Sensing Big Data into the Management and Design of Highway Infrastructures
遥感大数据融入公路基础设施管理和设计
  • 批准号:
    RGPIN-2019-04576
  • 财政年份:
    2022
  • 资助金额:
    $ 22.52万
  • 项目类别:
    Discovery Grants Program - Individual
Rational Design of Nanocomposites as Efficient Catalysts for Hydrogen Production and CO2 Conversion into Valuable Fuels using Sun Light
合理设计纳米复合材料作为高效催化剂,利用太阳光制氢和将二氧化碳转化为有价值的燃料
  • 批准号:
    RGPIN-2018-04974
  • 财政年份:
    2022
  • 资助金额:
    $ 22.52万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了