CAREER: Understanding the Origins of Mechanical Hysteresis and Functional Fatigue in Martensitic Phase Transforming Materials

职业:了解马氏体相变材料中机械滞后和功能疲劳的起源

基本信息

项目摘要

This Faculty Early Career Development (CAREER) project will elucidate long-lasting challenges facing materials that have reversibly tunable properties by way of a solid-to-solid phase transformation called martensitic phase transformation. For example, "switchable" multiferroics are materials that have distinct elastic, electric, and/or magnetic properties that can be reversibly "switched on or off" by inducing martensitic phase transformations. Switchable multiferroics have inspired novel energy conversion, energy harvesting, and actuator technologies, but hysteresis (loss of work capacity) and functional fatigue or failure remain major barriers for the cycle lifetime demands of these technologies. The goal of this research is to advance the understanding of mechanical hysteresis and functional fatigue in these materials through multiscale, multimodal in-situ experimentation. The award will also launch a comprehensive education and outreach platform with two main thrusts: (1) interactive extended reality (XR) learning tools for undergraduate and graduate courses as well as dissemination of research, and (2) hands-on demos on concepts of physics/mechanics for public outreach. These demos will also be used in workshops for underrepresented K–12 students through a Detroit-based summer camp.Martensitic phase transformations are the enabling mechanism behind the advanced performances of many diverse materials including "switchable" multiferroics, steels, elastomers, high entropy alloys, superconductors, and many materials at high strain rates. Due to the complexities of martensitic phase transformations, understanding these behaviors is a significant scientific challenge, and the hysteresis and functional fatigue associated with reversible martensitic transformations remain major technological barriers. The objective of this work is to understand mechanical hysteresis and functional fatigue by investigating the cyclic activation and propagation of martensitic microstructures. The approach is to resolve the hierarchical nature of the underlying micromechanics in situ, in 3D, and across five orders of magnitude in length scale, from the motion of the individual interfaces to the aggregate behavior of hundreds of grains. This multiscale approach will be achieved using multimodal 3D/4D in-situ characterization with dark-field X-ray microscopy, X-ray topo-tomography, and high-energy diffraction microscopy on magnesium-scandium shape memory alloys. The expected outcome is a new framework for understanding the mechanics of martensitic phase transforming materials that emerges from a multiscale understanding of stress-activated habit plane variant selection, incorporates the important role of defects, interfacial stress fields, and microstructural repeatability, and has broad implications for imperative cross¬cutting micromechanics challenges.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该学院早期职业发展(CAREER)项目将阐明材料所面临的长期挑战,这些材料通过称为马氏体相变的固-固相转变具有可逆可调特性。例如,“可切换的”多铁性材料是具有不同的弹性、电和/或磁性质的材料,其可以通过诱导马氏体相变而可逆地“接通或断开”。可切换多铁性激发了新的能量转换,能量收集和致动器技术,但滞后(工作能力的损失)和功能疲劳或故障仍然是这些技术的循环寿命需求的主要障碍。本研究的目标是通过多尺度、多模态原位实验来促进对这些材料的机械滞后和功能疲劳的理解。该奖项还将推出一个全面的教育和推广平台,主要有两个目标:(1)交互式延展实境(XR)学习工具,用于本科生和研究生课程以及研究的传播,以及(2)物理/力学概念的实践演示,用于公共宣传。这些演示也将通过底特律的夏令营用于为代表性不足的K-12学生举办的研讨会。马氏体相变是许多不同材料的先进性能背后的实现机制,包括“可切换”多铁性材料、钢、弹性体、高熵合金、超导体和许多高应变率材料。由于马氏体相变的复杂性,理解这些行为是一个重大的科学挑战,与可逆马氏体相变相关的滞后和功能疲劳仍然是主要的技术障碍。本工作的目的是通过研究马氏体微观结构的循环激活和扩展来了解机械滞后和功能疲劳。该方法是解决底层微观力学的层次性质在原位,在3D中,并跨越五个数量级的长度尺度,从单个界面的运动到数百个晶粒的聚集行为。这种多尺度的方法将实现使用多模态3D/4D原位表征与暗场X射线显微镜,X射线拓扑断层扫描,和高能衍射显微镜上的镁钪形状记忆合金。预期的结果是理解马氏体相变材料力学的新框架,该框架来自对应力激活惯习面变体选择的多尺度理解,结合了缺陷、界面应力场和微观结构可重复性的重要作用,该奖项反映了NSF的法定使命,并被认为值得支持通过使用基金会的知识价值和更广泛的影响审查标准进行评估。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
3D in-situ characterization of dislocation density in nickel-titanium shape memory alloys using high-energy diffraction microscopy
  • DOI:
    10.1016/j.actamat.2024.119659
  • 发表时间:
    2024-01
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Wenxi Li;Sangwon Lee;Tianchi Zhang;Yuefeng Jin;Darren Pagan;Lee Casalena;Michael Mills;A. Bucsek
  • 通讯作者:
    Wenxi Li;Sangwon Lee;Tianchi Zhang;Yuefeng Jin;Darren Pagan;Lee Casalena;Michael Mills;A. Bucsek
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ashley Bucsek其他文献

The derivation of CRSS in pure Ti and Ti-Al alloys
纯钛和钛铝合金中临界 resolved shear stress(CRSS)的推导
  • DOI:
    10.1016/j.ijplas.2024.104187
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
    12.800
  • 作者:
    Daegun You;Orcun Koray Celebi;Ahmed Sameer Khan Mohammed;Ashley Bucsek;Huseyin Sehitoglu
  • 通讯作者:
    Huseyin Sehitoglu
Probing rapid solidification pathways in refractory complex concentrated alloys via multimodal synchrotron X-ray imaging and melt pool-scale simulation
  • DOI:
    10.1557/s43578-024-01474-7
  • 发表时间:
    2024-11-02
  • 期刊:
  • 影响因子:
    2.900
  • 作者:
    Dillon K. Jobes;Yuanren Liu;Lucero Lopez;Seunghee Oh;Ashley Bucsek;Daniel Rubio-Ejchel;Christopher Tandoc;Yong-Jie Hu;Jerard V. Gordon
  • 通讯作者:
    Jerard V. Gordon
Taking three-dimensional x-ray diffraction (3DXRD) from the synchrotron to the laboratory scale
将三维 X 射线衍射(3DXRD)从同步加速器扩展到实验室规模
  • DOI:
    10.1038/s41467-025-58255-x
  • 发表时间:
    2025-04-29
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Seunghee Oh;Yuefeng Jin;Sangwon Lee;Wenxi Li;Ken Geauvreau;Matthew Williams;Robert Drake;Ashley Bucsek
  • 通讯作者:
    Ashley Bucsek
Correction: Resolving intragranular stress fields in plastically deformed titanium using point-focused high-energy diffraction microscopy
  • DOI:
    10.1557/s43578-023-01002-z
  • 发表时间:
    2023-04-11
  • 期刊:
  • 影响因子:
    2.900
  • 作者:
    Wenxi Li;Hemant Sharma;Peter Kenesei;Sidharth Ravi;Huseyin Sehitoglu;Ashley Bucsek
  • 通讯作者:
    Ashley Bucsek
Multiscale investigation of thermomechanical and compositional developments in Ni alloy 718 under laser processing
镍合金718在激光加工下热机械和成分变化的多尺度研究
  • DOI:
    10.1016/j.actamat.2025.121145
  • 发表时间:
    2025-08-01
  • 期刊:
  • 影响因子:
    9.300
  • 作者:
    Seunghee Oh;Rachel Lim;Andrew Chihpin Chuang;Benjamin Gould;Ashley Bucsek;Anthony Rollett
  • 通讯作者:
    Anthony Rollett

Ashley Bucsek的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Understanding complicated gravitational physics by simple two-shell systems
  • 批准号:
    12005059
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: RUI: Extraordinary circadian clocks in araneoid spiders: an integrative approach to understanding their evolutionary origins and underlying mechanisms
合作研究:RUI:类蜘蛛的非凡生物钟:一种理解其进化起源和潜在机制的综合方法
  • 批准号:
    2235710
  • 财政年份:
    2023
  • 资助金额:
    $ 71.98万
  • 项目类别:
    Standard Grant
Understanding the origins and mechanisms of aryl hydrocarbon receptor promiscuity
了解芳烃受体混杂的起源和机制
  • 批准号:
    10679532
  • 财政年份:
    2023
  • 资助金额:
    $ 71.98万
  • 项目类别:
Understanding the mechanistic origins and evolution of gene body DNA methylation
了解基因体 DNA 甲基化的机制起源和进化
  • 批准号:
    2242696
  • 财政年份:
    2023
  • 资助金额:
    $ 71.98万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Extraordinary circadian clocks in araneoid spiders: an integrative approach to understanding their evolutionary origins and underlying mechanisms
合作研究:RUI:类蜘蛛的非凡生物钟:一种理解其进化起源和潜在机制的综合方法
  • 批准号:
    2235711
  • 财政年份:
    2023
  • 资助金额:
    $ 71.98万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Extraordinary circadian clocks in araneoid spiders: an integrative approach to understanding their evolutionary origins and underlying mechanisms
合作研究:RUI:类蜘蛛的非凡生物钟:一种理解其进化起源和潜在机制的综合方法
  • 批准号:
    2235712
  • 财政年份:
    2023
  • 资助金额:
    $ 71.98万
  • 项目类别:
    Standard Grant
Understanding the Evolutionary Origins of Theory of Mind: Computational Modeling of Conserved Cognitive Mechanisms Across Primates
理解心理理论的进化起源:灵长类动物保守认知机制的计算模型
  • 批准号:
    2104589
  • 财政年份:
    2022
  • 资助金额:
    $ 71.98万
  • 项目类别:
    Fellowship Award
Understanding the fundamental characteristic variations among starch nanoparticles from different botanical origins isolated by a combination of physical, chemical and enzymatic techniques
了解通过物理、化学和酶技术相结合分离的不同植物来源的淀粉纳米颗粒的基本特征差异
  • 批准号:
    RGPIN-2018-06158
  • 财政年份:
    2022
  • 资助金额:
    $ 71.98万
  • 项目类别:
    Discovery Grants Program - Individual
SHINE: Understanding the Physical Connection of the in-situ Properties and Coronal Origins of the Solar Wind with a Novel Artificial Intelligence Investigation
SHINE:通过新颖的人工智能研究了解太阳风的原位特性和日冕起源的物理联系
  • 批准号:
    2229138
  • 财政年份:
    2022
  • 资助金额:
    $ 71.98万
  • 项目类别:
    Continuing Grant
Integrative understanding of cardiac and mediastinal diseases based on the common developmental origins
基于共同发育起源对心脏和纵隔疾病的综合理解
  • 批准号:
    22H04991
  • 财政年份:
    2022
  • 资助金额:
    $ 71.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
CAREER: Understanding the origins of pearlite discontinuities in eutectoid microstructures: Modeling & Experiments
职业:了解共析微观结构中珠光体不连续性的起源:建模
  • 批准号:
    2145812
  • 财政年份:
    2022
  • 资助金额:
    $ 71.98万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了