Distributed Learning for Undergraduate Programs in Data Science at Diverse Universities

不同大学数据科学本科课程的分布式学习

基本信息

项目摘要

This project aims to serve the national interest by improving undergraduate education in data science. This project will develop and deliver ten Data Sciences (DS) courses to students from a consortium of eleven diverse universities by using a flexible distributed learning (DL) platform. This consortium will provide increased opportunities for DS instruction at institutions with limited infrastructure and resources, including seven minority-serving institutions. The courses will adapt the United States military's advanced DL technology to an academic setting in order to harness the power of artificial intelligence (AI) in tailoring optimal learning experiences for the specific needs of each individual student. Pervasive DL technologies help to overcome inefficiencies found at individual institutions due to small enrollments and limited faculty expertise. At least two hundred undergraduates will gain research experiences from taking the consortium's DS coursework, participating in a summer research workshop, and obtaining a DS consortium certification. To broaden this project’s overall impact on equal learning opportunities and social mobility this project will recruit students from diverse backgrounds.The project aims to implement data-driven pedagogical research on innovative DL practices across diverse universities through the use of adaptive distributed learning (ADL). The difference between DL and ADL courses is that the latter utilizes the interoperable data exchange standard of the U.S. Department of Defense to leverage the power of AI, big data, and communication technologies. ADL provides learning that can be personalized and delivered anytime and anywhere to an individual student. The adaptation of ADL technologies in an academic setting remains largely untested and would benefit greatly from an analysis of its efficacy. The consortium is organized into four organizational clusters headed by Embry-Riddle Aeronautical University (FL), the University of North Texas, and Florida A&M University. Institutions within each cluster include Bethune-Cookman University (FL), California State University at Los Angeles, Hampden-Sydney College (VA), Jackson State University (MS), Jarvis Christian College (TX), Lane College (TN), Morgan State University (MD), and Simmons University (MA). Leveraging the combined physical and intellectual resources of this alliance of diverse institutions with DL technology provides students at these institutions with the opportunity to pursue DS training on par with what would be expected in a research university setting, thereby removing barriers that may exist for these students to prepare for competition in the STEM job marketplace. The NSF IUSE: EHR Program supports research and development projects to improve the effectiveness of STEM education for all students. Through the Engaged Student Learning track, the program supports the creation, exploration, and implementation of promising practices and tools.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在通过改善数据科学本科教育来服务于国家利益。该项目将通过使用灵活的分布式学习(DL)平台,为来自11所不同大学的学生开发和提供10门数据科学(DS)课程。该联盟将为基础设施和资源有限的机构(包括七个为少数族裔服务的机构)提供更多的DS教学机会。这些课程将使美国军方先进的DL技术适应学术环境,以便利用人工智能(AI)的力量为每个学生的特定需求量身定制最佳学习体验。普遍的DL技术有助于克服个别机构由于招生人数少和教师专业知识有限而导致的效率低下。至少有200名本科生将通过参加该联盟的DS课程、参加夏季研究研讨会和获得DS联盟认证来获得研究经验。为了扩大该项目对平等学习机会和社会流动性的整体影响,该项目将招募来自不同背景的学生。该项目旨在通过使用自适应分布式学习(ADL),在不同大学实施数据驱动的创新DL实践教学研究。DL和ADL课程之间的区别在于,后者利用美国国防部的可互操作数据交换标准来利用人工智能,大数据和通信技术的力量。ADL提供可以个性化的学习,并随时随地交付给个别学生。在学术环境中的ADL技术的适应仍然在很大程度上未经测试,将大大受益于其功效的分析。该联盟分为四个组织集群,由安柏瑞德航空大学(佛罗里达州),北德克萨斯大学和佛罗里达A M大学领导。每个集群内的机构包括Bethune-Cookman大学(FL),洛杉矶的加州州立大学,汉普顿-悉尼学院(VA),杰克逊州立大学(MS),贾维斯基督教学院(TX),莱恩学院(TN),摩根州立大学(MD)和西蒙斯大学(MA)。利用DL技术的不同机构联盟的综合物理和智力资源,为这些机构的学生提供了与研究型大学环境中预期的一样进行DS培训的机会,从而消除了这些学生可能存在的障碍,为STEM就业市场的竞争做好准备。NSF IUSE:EHR计划支持研究和开发项目,以提高所有学生STEM教育的有效性。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ecological Trait-Based Digital Categorization of Microbial Genomes for Denitrification Potential
  • DOI:
    10.3390/microorganisms12040791
  • 发表时间:
    2024-04-01
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Isokpehi,Raphael D.;Kim,Yungkul;Trivedi,Vishwa D.
  • 通讯作者:
    Trivedi,Vishwa D.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Clement Yedjou其他文献

Clement Yedjou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
  • 批准号:
    62003314
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
  • 批准号:
    61902016
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
  • 批准号:
    61806040
  • 批准年份:
    2018
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
  • 批准号:
    51769027
  • 批准年份:
    2017
  • 资助金额:
    38.0 万元
  • 项目类别:
    地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
  • 批准号:
    61573081
  • 批准年份:
    2015
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
  • 批准号:
    61572533
  • 批准年份:
    2015
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目
E-Learning中学习者情感补偿方法的研究
  • 批准号:
    61402392
  • 批准年份:
    2014
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

HSI Implementation and Evaluation Project: Undergraduate Research Experiences in Machine Learning for First Generation Students
HSI 实施和评估项目:第一代学生的机器学习本科研究经验
  • 批准号:
    2345361
  • 财政年份:
    2024
  • 资助金额:
    $ 32万
  • 项目类别:
    Continuing Grant
Investigating Video-based Graduate Teaching Assistant Professional Development to Support Universal Design for Learning in Undergraduate Chemistry Courses
调查基于视频的研究生助教专业发展以支持本科化学课程学习的通用设计
  • 批准号:
    2236260
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
Collaborative Research: Using a Self-Guided Online Intervention to Address Student Fear of Negative Evaluation in Active Learning Undergraduate Biology Courses
合作研究:利用自我引导的在线干预来解决学生在主动学习本科生物学课程中对负面评价的恐惧
  • 批准号:
    2409880
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
Collaborative Research: Mentoring You is Learning for Me: Peer Mentor Preparation and Mentoring of Undergraduate Engineering Student Learning in Makerspaces
合作研究:指导你就是我的学习:同伴导师对本科生在创客空间学习的准备和指导
  • 批准号:
    2315230
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
Targeted Infusion Project: Infusing deep learning into the undergraduate computer science and engineering curricula
有针对性的注入项目:将深度学习注入本科计算机科学与工程课程
  • 批准号:
    2306141
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
Creating Autonomy-Supportive Learning Environments Using Undergraduate Student Pedagogy Advocates
利用本科生教育学倡导者创建支持自主的学习环境
  • 批准号:
    2236118
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
Personalized Adaptive Learning in Undergraduate Mathematics: A Meta-Analysis
本科数学中的个性化适应性学习:荟萃分析
  • 批准号:
    2236074
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
Collaborative Research: Developing Service-Learning Course-based Undergraduate Research Experiences to Increase Student Interest in Research by Targeting Communal Goals
合作研究:开发基于服务学习课程的本科生研究经验,通过瞄准共同目标来提高学生的研究兴趣
  • 批准号:
    2310250
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
Leveraging Machine Learning to Explore the Effects of the Design2Data Course-based Undergraduate Research Experience
利用机器学习探索基于 Design2Data 课程的本科生研究经验的效果
  • 批准号:
    2315767
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
Collaborative Research: Mentoring You is Learning for Me: Peer Mentor Preparation and Mentoring of Undergraduate Engineering Student Learning in Makerspaces
合作研究:指导你就是我的学习:同伴导师对本科生在创客空间学习的准备和指导
  • 批准号:
    2315229
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了