Collaborative Research: Imaging the 3D Viscosity Structure of the Antarctic Mantle with Existing Observations from GPS and Relative Sea Level

合作研究:利用 GPS 和相对海平面的现有观测结果对南极地幔的 3D 粘度结构进行成像

基本信息

  • 批准号:
    2142593
  • 负责人:
  • 金额:
    $ 24.07万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-02-15 至 2025-01-31
  • 项目状态:
    未结题

项目摘要

Given the imminent threat posed by rising sea levels across much of the globe, there is a critical need to better understand past, present, and future Antarctic ice mass change and the resulting solid Earth deformation. The latter process is referred to as glacial isostatic adjustment. A key parameter that determines the rate of this deformation is the viscosity of the deforming material. To date, the vast majority of global glacial isostatic adjustment models assume that Earth's viscosity structure varies with depth alone. However, there exists extensive geological and geophysical evidence for significant lateral variations in viscosity and for the existence of low viscosity regions in the Earths mantle below Antarctica that deform rapidly on decadal or faster time scales. This variability in viscosity causes regions of the solid mantle to deform differently and thus a model of three-dimensional viscosity structure is needed to better measure the changing weight of the Antarctic ice sheet, to accurately model ice sheet dynamics, and to better project future sea level changes in response to Antarctic ice melt. The research conducted here will construct a first-generation reference three-dimensional viscosity model for the solid Earth underlying Antarctica. The analysis will use horizontal and vertical deformations measured by the Global Navigation Satellite System over the last few decades at sites across Antarctica, a state-of-the-art seismic model of the Antarctic mantle, coupled simulations of glacial isostatic adjustment and ice sheet stability, and a novel, observationally driven and mathematically rigorous approach to calculating the glacial isostatic adjustment parameters that cannot be directly observed. This project supports two early-career researchers and two graduate students. Funding will be used to support the participation of U.S. graduate students and instructors in a glacial isostatic adjustment training school, which will be organized by the principal investigator and leadership of the Scientific Committee on Antarctic Research initiative Instabilities and Thresholds in Antarctica.Quantifying the magnitude of modern ice mass loss from Antarctica is a key element in efforts to constrain future sea level change. Although satellite gravimetry and changes in ice surface elevation are used to estimate ice mass change, these observations cannot provide a direct estimate because they also record changes in the solid Earth. Similarly, modeling of past and future ice sheet dynamics and sea level change require an accurate model of solid earth deformation. Thus, the contribution from the ongoing response of the viscoelastic Earth to ice sheet evolution across the ice age and into the modern world, termed glacial isostatic adjustment (GIA), must be accurately quantified. Although the signal from GIA is widely recognized as being a significant component of modern Antarctic deformation, our incomplete knowledge of earths three-dimensional viscosity structure and the appropriate rheological model for the solid Earth deformation leads to large uncertainties in estimates of present-day ice mass change and modeling of future ice dynamics and sea level change. Fortunately, direct observations of solid Earth deformation have been made over the last few decades by Global Navigation Satellite System (GNSS) stations installed on bedrock across Antarctica. These observations have been used in forward modeling to infer regional one-dimensional viscosity structure, but they have not been directly used to image the continents three-dimensional viscosity structure. This will be addressed through four key tasks: (1) Inferring plausible steady-state diffusion creep viscosity models from the seismic shear wave speeds determined with the latest ANT-20 seismic tomography model using an inverse calibration scheme based on experimental results from mineral physics and a suite of geophysical constraints; (2) Determining ice histories that span from the Last Glacial Maximum to present from a coupled GIA/ice sheet model, which explores the range of inferred three-dimensional viscosity models and plausible parameters governing ice dynamics. These ice histories will be merged with modern estimates of ice mass change; (3) Exploring and characterizing the spatiotemporal sensitivities of vertical and horizontal GNSS deformation and relative sea level observations to the three-dimensional viscosity structure and ice history produced in tasks 1 and 2 using the adjoint method; and (4) Inverting observations of GNSS crustal deformation rates and relative sea level using the adjoint method to derive a new three-dimensional map of mantle viscosity below Antarctica. These inversions will use the models from task 1 and 2 and intuition gained from task 3 to further refine the three-dimensional viscosity structure and to explore whether observations include signals of transient or non-linear deformation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
鉴于海平面上升对地球仪的威胁迫在眉睫,迫切需要更好地了解过去,现在和未来的南极冰量变化以及由此产生的固体地球变形。后一个过程被称为冰川均衡调整。决定这种变形速率的关键参数是变形材料的粘度。迄今为止,绝大多数全球冰川均衡调整模型都假设地球的粘性结构仅随深度而变化。然而,有大量的地质和地球物理证据表明,粘度存在显著的横向变化,南极洲以下的地幔中存在低粘度区域,这些区域在十年或更快的时间尺度上迅速变形。这种粘度的变化导致固体地幔的区域以不同的方式变形,因此需要一个三维粘度结构模型来更好地测量南极冰盖重量的变化,准确地模拟冰盖动力学,并更好地预测未来海平面的变化,以应对南极冰融化。在这里进行的研究将建立第一代参考三维粘度模型的固体地球南极洲的基础。这项分析将利用全球导航卫星系统过去几十年在南极各地测得的水平和垂直变形、南极地幔最先进的地震模型、冰川均衡调整和冰盖稳定性的耦合模拟,以及一种新的、由观测驱动的、数学上严格的方法来计算无法直接观测到的冰川均衡调整参数。该项目支持两名早期职业研究人员和两名研究生。资金将用于支持美国研究生和教师参加冰川均衡调整培训学校,该培训学校将由南极研究科学委员会的首席研究员和领导人组织,在南极洲的不稳定性和不稳定性。量化南极洲现代冰量损失的幅度是限制未来海平面变化的关键因素。虽然卫星重力测量和冰面高程的变化被用来估计冰的质量变化,但这些观测不能提供直接的估计,因为它们也记录了固体地球的变化。同样,过去和未来冰盖动态和海平面变化的建模需要一个精确的固体地球变形模型。因此,贡献的持续响应的粘弹性地球冰盖演变跨越冰河时代,并进入现代世界,称为冰川均衡调整(GIA),必须准确量化。虽然来自GIA的信号被广泛认为是现代南极变形的重要组成部分,但我们对地球三维粘性结构和固体地球变形的适当流变学模型的不完整知识导致对当今冰质量变化的估计以及对未来冰动力学和海平面变化的建模存在很大的不确定性。幸运的是,在过去几十年里,安装在南极洲基岩上的全球导航卫星系统(GNSS)台站对固体地球变形进行了直接观测。这些观测结果已被用于正演模拟,以推断区域一维粘性结构,但它们还没有被直接用于成像大陆的三维粘性结构。这将通过四项关键任务来解决:(1)根据矿物物理学实验结果和一套地球物理约束条件,使用反校准方案,从最新ANT-20地震层析成像模型确定的地震剪切波速度推断合理的稳态扩散蠕变粘度模型;(2)从GIA/冰盖耦合模式确定从末次盛冰期到现在的冰史,该模式探讨了推断的三维粘度模型和控制冰动力学的合理参数的范围。(3)探索和描述全球导航卫星系统垂直和水平变形以及相对海平面观测对任务1和任务2中使用伴随方法产生的三维粘性结构和冰史的时空敏感性;(4)利用伴随方法反演全球导航卫星系统地壳形变速率和相对海平面的观测数据,以获得新的南极洲下地幔粘性三维图。这些反演将使用任务1和2的模型以及任务3中获得的直觉,进一步完善三维粘度结构,并探索观测结果是否包括瞬态或非线性变形的信号。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jerry Mitrovica其他文献

Jerry Mitrovica的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jerry Mitrovica', 18)}}的其他基金

Collaborative Research: P2C2--Constraints on Last Interglacial and Late Holocene Global Mean Sea Level and Fingerprinting Polar Ice Mass Flux from Broadly Distributed Coastal Caves
合作研究:P2C2——对末次间冰期和晚全新世全球平均海平面的约束以及广泛分布的沿海洞穴的极地冰质量通量指纹识别
  • 批准号:
    2202698
  • 财政年份:
    2022
  • 资助金额:
    $ 24.07万
  • 项目类别:
    Standard Grant
Collaborative Research: The Lake Superior Basin: Natural Geomorphic Experiment, Deepwater-Terminating Ice Stream, and Isostatically Adjusting Rift
合作研究:苏必利尔湖盆地:自然地貌实验、深水终止冰流和均衡调整裂谷
  • 批准号:
    2218460
  • 财政年份:
    2022
  • 资助金额:
    $ 24.07万
  • 项目类别:
    Standard Grant
Collaborative Research: Constraining West Antarctic Ice Sheet Elevation during the last Interglacial
合作研究:限制末次间冰期期间南极西部冰盖的海拔
  • 批准号:
    1744927
  • 财政年份:
    2018
  • 资助金额:
    $ 24.07万
  • 项目类别:
    Continuing Grant
Collaborative Research: P2C2 - Reconstructing rates and sources of sea-level change over the last ~150 thousand years from a new coral database
合作研究:P2C2 - 从新的珊瑚数据库重建过去约 15 万年海平面变化的速率和来源
  • 批准号:
    1702684
  • 财政年份:
    2017
  • 资助金额:
    $ 24.07万
  • 项目类别:
    Standard Grant
CSEDI Collaborative Research: Anelastic properties of the Earth from seismic to tidal timescale
CSEDI 合作研究:从地震到潮汐时间尺度的地球滞弹性特性
  • 批准号:
    1464033
  • 财政年份:
    2015
  • 资助金额:
    $ 24.07万
  • 项目类别:
    Continuing Grant
Collaborative research: Sea-level variability during the Common Era
合作研究:公元元年海平面变化
  • 批准号:
    1458907
  • 财政年份:
    2015
  • 资助金额:
    $ 24.07万
  • 项目类别:
    Standard Grant
Collaborative research: Sea-level responses to sediment erosion and deposition over the past 3 million years
合作研究:过去 300 万年海平面对沉积物侵蚀和沉积的响应
  • 批准号:
    1527351
  • 财政年份:
    2015
  • 资助金额:
    $ 24.07万
  • 项目类别:
    Continuing Grant
Collaborative Research: The impact of time-dependent mantle rheology and 3-D structure on models and observations of Glacial Isostatic Adjustment
合作研究:随时间变化的地幔流变学和三维结构对冰川均衡调整模型和观测的影响
  • 批准号:
    1315368
  • 财政年份:
    2013
  • 资助金额:
    $ 24.07万
  • 项目类别:
    Continuing Grant
Studies of Mantle Dynamics and Evolution
地幔动力学和演化研究
  • 批准号:
    1215061
  • 财政年份:
    2012
  • 资助金额:
    $ 24.07万
  • 项目类别:
    Continuing Grant
Collaborative Research: P2C2 -- Statistical estimation of past ice sheet volumes from paleo-sea level records
合作研究:P2C2——根据古海平面记录对过去冰盖体积的统计估计
  • 批准号:
    1203414
  • 财政年份:
    2012
  • 资助金额:
    $ 24.07万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
  • 批准号:
    2403122
  • 财政年份:
    2024
  • 资助金额:
    $ 24.07万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO-NERC: Magnetotelluric imaging and geodynamical/geochemical investigations of plume-ridge interaction in the Galapagos
合作研究:NSFGEO-NERC:加拉帕戈斯群岛羽流-山脊相互作用的大地电磁成像和地球动力学/地球化学研究
  • 批准号:
    2334541
  • 财政年份:
    2024
  • 资助金额:
    $ 24.07万
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
  • 批准号:
    2403123
  • 财政年份:
    2024
  • 资助金额:
    $ 24.07万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO-NERC: Magnetotelluric imaging and geodynamical/geochemical investigations of plume-ridge interaction in the Galapagos
合作研究:NSFGEO-NERC:加拉帕戈斯群岛羽流-山脊相互作用的大地电磁成像和地球动力学/地球化学研究
  • 批准号:
    2334542
  • 财政年份:
    2024
  • 资助金额:
    $ 24.07万
  • 项目类别:
    Continuing Grant
Collaborative Research: Evaluating and parameterizing wind stress over ocean surface waves using integrated high-resolution imaging and numerical simulations
合作研究:利用集成高分辨率成像和数值模拟评估和参数化海洋表面波浪的风应力
  • 批准号:
    2319535
  • 财政年份:
    2023
  • 资助金额:
    $ 24.07万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Motion Fields Understanding for Enhanced Long-Range Imaging
合作研究:RI:小型:增强远程成像的运动场理解
  • 批准号:
    2232298
  • 财政年份:
    2023
  • 资助金额:
    $ 24.07万
  • 项目类别:
    Standard Grant
Collaborative Research: Metasurface-Enabled Broadband Circular Dichroism Spectroscopy and Imaging
合作研究:超表面宽带圆二色光谱和成像
  • 批准号:
    2305138
  • 财政年份:
    2023
  • 资助金额:
    $ 24.07万
  • 项目类别:
    Standard Grant
Collaborative Research: Magnetic Clustering using Novel Poly(amino acid) Corrals to Advance Magnetic Particle Imaging
合作研究:利用新型聚氨基酸畜栏进行磁聚类以推进磁粒子成像
  • 批准号:
    2305404
  • 财政年份:
    2023
  • 资助金额:
    $ 24.07万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Instrument Development: Ångström-Scale Operando Spectroscopic Imaging at Heterogeneous Electrochemical Interfaces
合作研究:RUI:仪器开发:异质电化学界面的埃级操作光谱成像
  • 批准号:
    2304955
  • 财政年份:
    2023
  • 资助金额:
    $ 24.07万
  • 项目类别:
    Standard Grant
Collaborative Research: Magnetic Clustering using Novel Poly(amino acid) Corrals to Advance Magnetic Particle Imaging
合作研究:利用新型聚氨基酸畜栏进行磁聚类以推进磁粒子成像
  • 批准号:
    2305402
  • 财政年份:
    2023
  • 资助金额:
    $ 24.07万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了