CAREER: Improving Bicycling Safety by Developing a Research Framework for Studying Driver-Bicyclist Interactions
职业:通过开发研究驾驶员与骑车人互动的研究框架来提高骑车安全
基本信息
- 批准号:2142757
- 负责人:
- 金额:$ 54.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-01 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This Faculty Early Career Development (CAREER) award supports research to advance the safety of environmentally sustainable, active, and equitable mobility modes by exploring ways to improve bicycling safety. Bicycling has long been an important mobility mode for its environmental, health, and economic benefits. Nonetheless, bicycling is still largely underutilized in the U.S. The perceived danger of bicycling in motorized traffic has deterred many from considering it as a viable mobility option. This NSF grant will fill the knowledge gap to better understand how drivers and bicyclists interact with each other in the context of real-world roadway designs, and the key factors that shape their behaviors. The outcome of this research will support engineers and practitioners, city planners, and policymakers and legislators by providing data-driven insights to design safer road infrastructures, bicycle facilities, traffic laws and regulations, training and education programs, and safety technologies. The research activities are integrated with educational activities to foster local K-12 students' interests in STEM fields and train the next generation of scientists and engineers to work towards the urban future in which sustainable and active mobility will play a key role. The outreach to the local communities and dissemination of the online free educational materials on bicycling safety will promote active mobility modes to the general public nationwide.The main research questions of this project are (a) how do drivers and bicyclists interact with each other in the context of roadways designs, (b) what are the key factors and underlying mechanisms for driver-bicyclist crashes and conflicts, and (c) how can researchers systematically generate data-driven insights in active mobility safety research? To this end, this grant will develop a bicycling safety research framework that incorporates a variety of complementary methodologies and technologies, including (1) observational studies in real-world natural settings from complementary perspectives using naturalistic driving, cycling, and drone data; (2) laboratory experiments in a safe, controlled, and replicable environment using high-fidelity virtual reality cycling and driving simulators; (3) crash data analysis of bicyclist fatalities and injuries; and (4) computational modeling and simulation. A number of common and dangerous driver-bicyclist interaction types will be examined, including overtaking bicyclists and intersection-related conflicts. A wide range of factors involving driver and vehicle, bicyclist, and road infrastructure will be examined for their effects on bicycling safety measured by surrogate safety measures. This research also integrates many tools including big data, causal inference, human factors, virtual reality, lidar sensing, and computational human modeling. In addition, an open-source data repository of driver-bicyclist interactions will be developed to support the broader transportation research community.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该学院早期职业发展(CAREER)奖支持研究,通过探索提高骑自行车安全性的方法来促进环境可持续,积极和公平的移动模式的安全性。骑自行车长期以来一直是一种重要的交通方式,因为它具有环境,健康和经济效益。尽管如此,在美国骑自行车仍然在很大程度上未得到充分利用。在机动交通中骑自行车的危险性阻止了许多人将其视为一种可行的机动选择。这项NSF拨款将填补知识空白,以更好地了解驾驶员和骑自行车的人如何在现实世界的道路设计背景下相互作用,以及塑造他们行为的关键因素。这项研究的成果将通过提供数据驱动的见解来设计更安全的道路基础设施、自行车设施、交通法规、培训和教育计划以及安全技术,从而为工程师和从业人员、城市规划者、政策制定者和立法者提供支持。研究活动与教育活动相结合,以培养当地K-12学生对STEM领域的兴趣,并培养下一代科学家和工程师,以实现可持续和积极的流动性将发挥关键作用的城市未来。该项目的主要研究问题是:(a)在道路设计的背景下,驾驶员和骑自行车的人如何相互作用;(B)驾驶员-骑自行车的人碰撞和冲突的关键因素和潜在机制是什么;(b)驾驶员-骑自行车的人碰撞和冲突的关键因素和潜在机制是什么;(c)驾驶员-骑自行车的人碰撞和冲突的关键因素和潜在机制是什么;(d)驾驶员-骑自行车的人碰撞和冲突的关键因素和潜在机制是什么。以及(c)研究人员如何在主动移动安全研究中系统地产生数据驱动的见解?为此,该基金将开发一个自行车安全研究框架,该框架将结合各种互补的方法和技术,包括(1)使用自然驾驶,自行车和无人机数据从互补的角度在现实世界的自然环境中进行观察研究;(2)使用高保真虚拟现实自行车和驾驶模拟器在安全,受控和可复制的环境中进行实验室实验;(3)自行车死亡和受伤的碰撞数据分析;(4)计算建模和仿真。一些常见的和危险的驾驶员骑自行车的互动类型将被检查,包括超车骑自行车和交叉口相关的冲突。广泛的因素,涉及驾驶员和车辆,骑自行车的人,和道路基础设施将检查其对骑自行车安全的替代安全措施测量的影响。这项研究还集成了许多工具,包括大数据,因果推理,人为因素,虚拟现实,激光雷达传感和计算人体建模。此外,还将开发一个关于驾驶员与自行车者互动的开源数据库,以支持更广泛的交通研究社区。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An Automatic Method to Extract Events of Drivers Overtaking Cyclists from Trajectory Data Captured by Drones
一种从无人机捕获的轨迹数据中提取驾驶员超越骑车人事件的自动方法
- DOI:10.25368/2022.503
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Munnamgi, H. Vasanth;Feng, Fred
- 通讯作者:Feng, Fred
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fred Feng其他文献
A Systematic Review of Challenging Scenarios Involving Automated Vehicles and Vulnerable Road Users
对涉及自动驾驶车辆和弱势道路使用者的挑战性场景的系统回顾
- DOI:
10.1177/21695067231192300 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Aditya Deshmukh;Zifei Wang;Huizhong Guo;Dania Ammar;Rini Sherony;Fred Feng;Brian T. W. Lin;Shan Bao;Feng Zhou - 通讯作者:
Feng Zhou
A systematic review of safety-critical scenarios between automated vehicles and vulnerable road users
对自动驾驶车辆和弱势道路使用者之间的安全关键场景进行系统审查
- DOI:
10.48550/arxiv.2305.11291 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
A. Deshmukh;Zifei Wang;Aaron Gunn;Huizhong Guo;Rini Sherony;Fred Feng;B. Lin;Shan Bao;Feng Zhou - 通讯作者:
Feng Zhou
Training and Education: Human Factors Considerations for Automated Driving Systems
培训和教育:自动驾驶系统的人为因素考虑因素
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
A. Pradhan;J. Sullivan;C. Schwarz;Fred Feng;S. Bao - 通讯作者:
S. Bao
Computational Modeling of Driver Lateral Control on Curved Roads With Integration of Vehicle Dynamics and Reference Trajectory Tracking
结合车辆动力学和参考轨迹跟踪的弯曲道路上驾驶员横向控制的计算建模
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Heejin Jeong;Fred Feng;Yili Liu - 通讯作者:
Yili Liu
A computer-aided usability testing tool for in-vehicle infotainment systems
用于车载信息娱乐系统的计算机辅助可用性测试工具
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:7.9
- 作者:
Fred Feng;Yili Liu;Yifan Chen - 通讯作者:
Yifan Chen
Fred Feng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Improving modelling of compact binary evolution.
- 批准号:10903001
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Balancing the global alkalinity cycle by improving models of river chemistry
职业:通过改进河流化学模型平衡全球碱度循环
- 批准号:
2338139 - 财政年份:2025
- 资助金额:
$ 54.9万 - 项目类别:
Continuing Grant
Understanding and Improving Electrochemical Carbon Dioxide Capture
了解和改进电化学二氧化碳捕获
- 批准号:
MR/Y034244/1 - 财政年份:2025
- 资助金额:
$ 54.9万 - 项目类别:
Fellowship
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
- 批准号:
10093095 - 财政年份:2024
- 资助金额:
$ 54.9万 - 项目类别:
Collaborative R&D
Improving Resilience of MCDI for Water Supply in Remote Communities
提高偏远社区供水的 MCDI 弹性
- 批准号:
DP240101469 - 财政年份:2024
- 资助金额:
$ 54.9万 - 项目类别:
Discovery Projects
Improving efficacy of biopesticides through understanding mode of action
通过了解作用方式提高生物农药的功效
- 批准号:
IE230100103 - 财政年份:2024
- 资助金额:
$ 54.9万 - 项目类别:
Early Career Industry Fellowships
mPatch: a rapid test for improving diagnosis and triage of melanoma patients in primary care
mPatch:一种快速测试,用于改善初级保健中黑色素瘤患者的诊断和分诊
- 批准号:
MR/Y503381/1 - 财政年份:2024
- 资助金额:
$ 54.9万 - 项目类别:
Research Grant
RII Track-4:NSF: Improving subseasonal-to-seasonal forecasts of Central Pacific extreme hydrometeorological events and their impacts in Hawaii
RII Track-4:NSF:改进中太平洋极端水文气象事件的次季节到季节预报及其对夏威夷的影响
- 批准号:
2327232 - 财政年份:2024
- 资助金额:
$ 54.9万 - 项目类别:
Standard Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 54.9万 - 项目类别:
Continuing Grant
ERI: Characterizing and improving algae-derived biofuel droplet burning
ERI:表征和改善藻类生物燃料液滴燃烧
- 批准号:
2301490 - 财政年份:2024
- 资助金额:
$ 54.9万 - 项目类别:
Standard Grant
Improving Flexible Attention to Numerical and Spatial Magnitudes in Young Children
提高幼儿对数字和空间大小的灵活注意力
- 批准号:
2410889 - 财政年份:2024
- 资助金额:
$ 54.9万 - 项目类别:
Continuing Grant














{{item.name}}会员




