CAREER: Studies of Chalcogen Bonding-Mediated Assembly towards Porous Crystalline Frameworks, Hierarchical Assemblies, and Multicomponent Materials
职业:硫族键介导的多孔晶体框架组装、分级组装和多组分材料的研究
基本信息
- 批准号:2143623
- 负责人:
- 金额:$ 76.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-01 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).Non-Technical Abstract: Discoveries of new materials have led to seismic advances in our societies. These advances typically occur through breakthroughs with one of two key components of materials: the repeating individual molecular or atomic building block or the way individual components are connected. Such materials can be considered analogous to a brick wall, with the bricks as the repeating blocks, and the mortar connecting them together. While an enormous diversity of building blocks is known, only a handful of established modes of connectivity exist. Generally, each different mode of connectivity allows the creation of an entire new class of materials. Perhaps the best example for this is the field of nanoporous frameworks, which are sponge-like materials containing voids slightly larger than individual molecules. Nanoporous frameworks containing similar bricks, but connected through different mortars, show vastly different behaviors, each type exhibiting a unique combination of properties. With support from the Solid State and Materials Chemistry program in the Division of Materials Research, the principal investigator and their research group develop a new class of nanoporous frameworks enabled by a recently discovered mode of connectivity. In doing so, the principal investigator advances our knowledge of connectivity in materials, particularly by advancing the understanding of this nascent connectivity, realizing unparalleled structural complexities in materials, and developing a class of materials with a hitherto unseen set of properties. To help teach the core concepts of how building blocks assemble into materials, the investigators also develop and disseminate an inexpensive and highly modular model kit exercise. This level-adaptable game uses multi-colored modeling clay and toothpicks to teach students how the bricks and mortar work together to form materials. To reduce inequalities in upper-division chemistry offerings between research universities and URM-serving primarily undergraduate institutions (PUIs), the principal investigator develops and offers a hybrid upper-division Physical Organic course that is simultaneously taught face-to-face at Colorado School of Mines and remotely to students at institutions across Colorado. Technical Abstract: The manner of bonding between constituent atoms or molecules invariably influences the properties of materials. Perhaps no material family is more emblematic of this than synthetic porous frameworks, wherein the properties, and thus utility, of a given subclass rely heavily on the directionality, dynamic reversibility, and net strength of the intermolecular interactions used. Therefore, the discovery and characterization of alternative modes of intermolecular assembly that may give rise to complementary material classes are of great interest. The primary objective of this project is to explore if chalcogen bonding, a recently defined non-covalent interaction, can deliberately and reliably assemble molecular tectons into low-density crystalline framework materials, towards the realization of a new class of frameworks: Chalcogen-Bonded Organic Frameworks, i.e. ChOFs. Empirical and computational studies of chalcogen bond-mediated assembly in model systems establish a set of quantitative guidelines for the rational design of permanently porous ChOFs with topologies predictively assembled from the molecular tecton structure and crystallization conditions. These insights lead to compositionally hierarchical and ordered multi-component materials, elusive features in established framework classes. Solution-phase association studies, such as NMR spectroscopy and ITC, and DFT-based calculations are used to quantify chalcogen bonding between synthesized tectons; the atomic structure of assembled frameworks is characterized by single-crystal XRD. An inexpensive and highly modular model kit exercise using modeling clay and toothpicks is developed and disseminated to students with the intent to teach core concepts of molecular assembly and crystal engineering. To reduce inequalities in upper-division chemistry offerings between research universities and URM-serving PUIs, the principal investigator develops and offers a hybrid upper-division Physical Organic course that is simultaneously taught face-to-face at Colorado School of Mines and remotely to students at institutions across Colorado.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项是根据2021年《美国救援计划法》的全部或部分资助的(公共法117-2)。非技术摘要:新材料的发现导致了我们社会的地震进步。这些进步通常通过与材料的两个关键组成部分之一的突破发生:重复的单个分子或原子构建块或单个组件连接的方式。这样的材料可以被认为类似于砖墙,将砖作为重复块,而砂浆将它们连接在一起。尽管已知构建基础的多样性,但只有少数已建立的连接模式存在。通常,每种不同的连接方式都可以创建整个新的材料类。也许最好的例子是纳米多孔框架的领域,纳米多孔框架是海绵状的材料,其中包含比单个分子大的空隙。纳米多孔框架包含相似的砖,但通过不同的迫击炮连接,表现出巨大的行为,每种类型都表现出独特的特性组合。在材料研究部的固态和材料化学计划的支持下,首席研究员及其研究小组开发了新的纳米多孔框架,该纳米多孔框架通过最近发现的连接模式来实现。在此过程中,主要研究者促进了我们对材料连通性的了解,尤其是通过促进对这种新生的连通性的理解,实现了材料中无与伦比的结构复杂性,并开发了一类材料,这些材料迄今为止迄今尚不清楚。为了帮助教授构建障碍如何将材料组装成材料的核心概念,研究人员还开发并传播了廉价且高度模块化的模型套件练习。该水平适应的游戏使用多色建模粘土和牙签来教学学生如何共同形成材料。为了减少研究型大学和URM服务之间主要是本科机构(PUI)之间的上级化学产品的不平等,主要研究人员开发并提供了混合的上层物理有机课程,同时在矿业和跨科学院的机构的学生学校和偏远地区同时向科罗拉多州的学生进行面对面教学。技术摘要:组成原子或分子之间的键合的方式总是会影响材料的特性。也许没有物质家族比合成的多孔框架更具象征性的象征,其中给定子类的属性(因此)在很大程度上依赖于使用的分子间相互作用的方向性,动态可逆性和净强度。因此,可能引起互补材料类别的分子间组件的替代模式的发现和表征引起了人们的极大兴趣。该项目的主要目的是探索Chalcogen键是否(最近定义的非共价相互作用)是否可以故意可靠地将分子构造组装到低密度的结晶框架材料中,以实现新的框架:Chalcogen键入的有机框架,即Chofs。模型系统中chalcogen键介导的组装组装的经验和计算研究为永久性多孔CHOF的合理设计建立了一组定量指南,并从分子构造结构和结晶条件下预测地组装了拓扑结构。这些见解导致构图分层和有序的多组分材料,在既定框架类中难以捉摸的特征。溶液相关研究,例如NMR光谱和ITC,基于DFT的计算用于量化合成构造之间的chalcogen键。组装框架的原子结构以单晶XRD为特征。使用建模粘土和牙签进行廉价且高度模块化的模型套件运动,并将其分发给有意教授分子组装和晶体工程核心概念的学生。为了减少研究型大学和乌尔姆服务PUI之间上等化学产品的不平等,首席研究员开发并提供了一门混合的上层物理有机课程,同时在科罗拉多州的矿业学院同时在科罗拉多州的矿业学院面对面教授,并通过跨科罗拉多州的机构进行了跨科罗拉多州的知识,并通过跨科罗拉多州进行了支持。和更广泛的影响审查标准。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher McGuirk其他文献
Christopher McGuirk的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
- 批准号:62371263
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
腙的Heck/脱氮气重排串联反应研究
- 批准号:22301211
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
- 批准号:52364038
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
- 批准号:82371176
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
- 批准号:82305286
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of B cell functional studies on primary antibody deficiencies
一抗缺陷 B 细胞功能研究的进展
- 批准号:
502607 - 财政年份:2024
- 资助金额:
$ 76.04万 - 项目类别:
Experimental and numerical studies on internal erosion of granular soils
颗粒土内部侵蚀的实验与数值研究
- 批准号:
DE240101106 - 财政年份:2024
- 资助金额:
$ 76.04万 - 项目类别:
Discovery Early Career Researcher Award
北欧諸国における男女間賃金格差是正への取組みと賃金透明化制度の役割に関する研 究
北欧国家纠正性别工资差距的努力和工资透明制度的作用研究
- 批准号:
24K15587 - 财政年份:2024
- 资助金额:
$ 76.04万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
ニコラウス・ペヴスナーの福祉社会デザインの研究
尼古拉斯·佩夫斯纳的福利社会设计研究
- 批准号:
24K15643 - 财政年份:2024
- 资助金额:
$ 76.04万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
実用化を目指した室温磁気センサを用いた心磁図による心筋電気活動の可視化の研究
基于室温磁传感器的心磁图心肌电活动可视化研究及其实际应用
- 批准号:
24K15719 - 财政年份:2024
- 资助金额:
$ 76.04万 - 项目类别:
Grant-in-Aid for Scientific Research (C)