CAREER: Risk-Averse Decision Making via Chance-Constrained Programming for Power Systems

职业:通过电力系统机会约束编程进行风险规避决策

基本信息

  • 批准号:
    2143679
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-03-01 至 2027-02-28
  • 项目状态:
    未结题

项目摘要

This NSF CAREER project aims to develop risk-averse decision-making models and methodologies to manage the integration of highly uncertain, large-scale renewable energy for society to benefit from cleaner, more reliable, and cost-effective power systems. The increase in renewable energy presents power systems with significant challenges due to the intermittency and limited predictability of production. Traditional operational strategies may be inadequate in the presence of such increased uncertainty when balancing power supply and demand economically and reliably. This CAREER project will bridge this pressing uncertainty gap to effectively integrate renewable energy and thus help to ensure system reliability and cost-effectiveness, which will bring transformative change to the power industry. The intellectual merits of the project include developing new risk-averse decision-making models to accommodate the nature of power systems and decision makers’ risk preferences, and developing new computationally efficient solution approaches to enable practical, useful solutions for all stakeholder and end-user communities. The broader impacts of the project include: (i) integrating research and education at the University of Arizona through mentoring undergraduate students in hands-on research for this CAREER project and connecting the research results with familiar applications to inspire the next generation of students to pursue a career in engineering; (ii) sustainable solutions to energy challenges in the Navajo Nation; and (iii) technology transfer to other applications in the presence of highly uncertainty for societally important industries in the US economy, such as transportation and finance.This project will adopt chance-constrained programming (an important variant of risk-averse stochastic programming against unfavorable randomness) to solve two core problems in power system operations: real-time dispatch and long-term generation planning. The research objectives and tasks will: (1) apply sampling-based methods to develop convex approximations for the chance constraints; and (2) develop decomposition approaches and implement the decomposition algorithms in a parallel-computing framework to solve the two example practical problems for uncertain, large-scale power systems. The developed approaches are expected to overcome the inherent computational challenges faced in actionable situations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
NSF CAREER项目旨在开发规避风险的决策模型和方法,以管理高度不确定的大规模可再生能源的整合,使社会受益于更清洁,更可靠和更具成本效益的电力系统。可再生能源的增加给电力系统带来了巨大的挑战,这是由于生产的不稳定性和有限的可预测性。在经济和可靠地平衡电力供应和需求时,传统的运营策略可能不足以应对这种增加的不确定性。该CAREER项目将弥合这一紧迫的不确定性差距,以有效整合可再生能源,从而有助于确保系统的可靠性和成本效益,这将为电力行业带来变革。该项目的智力优势包括开发新的风险规避决策模型,以适应电力系统的性质和决策者的风险偏好,并开发新的计算效率高的解决方案,为所有利益相关者和最终用户社区提供实用,有用的解决方案。该项目更广泛的影响包括:(一)通过指导本科生为这个职业生涯项目进行实践研究,并将研究结果与熟悉的应用程序联系起来,以激励下一代学生追求工程职业,将亚利桑那大学的研究和教育结合起来;(二)纳瓦霍民族能源挑战的可持续解决方案;以及(iii)在美国经济中具有社会重要性的行业(如运输和金融)存在高度不确定性的情况下,将技术转移到其他应用。本项目将采用机会约束规划(风险厌恶随机规划的一个重要变种,以对抗不利的随机性)来解决电力系统运行中的两个核心问题:实时调度和长期发电规划。研究目标和任务是:(1)应用基于采样的方法来开发机会约束的凸近似;(2)开发分解方法并在并行计算框架中实现分解算法,以解决不确定大规模电力系统的两个实际问题。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Data-Driven Chance-Constrained Planning for Distributed Generation: A Partial Sampling Approach
  • DOI:
    10.1109/tpwrs.2022.3230676
  • 发表时间:
    2023-11
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Shiyi Jiang;Jianqiang Cheng;Kai Pan;F. Qiu;Boshi Yang
  • 通讯作者:
    Shiyi Jiang;Jianqiang Cheng;Kai Pan;F. Qiu;Boshi Yang
Asymptotically tight conic approximations for chance-constrained AC optimal power flow
机会约束交流最优功率流的渐近紧圆锥曲线近似
  • DOI:
    10.1016/j.ejor.2022.06.020
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Mohammadi Fathabad, Abolhassan;Cheng, Jianqiang;Pan, Kai;Yang, Boshi
  • 通讯作者:
    Yang, Boshi
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jianqiang Cheng其他文献

Chance-constrained economic dispatch with renewable energy and storage
可再生能源和存储的机会约束经济调度
Improved estimator of the continuous-time kernel estimator
连续时间核估计器的改进估计器
A completely positive representation of 0-1 linear programs with joint probabilistic constraints
具有联合概率约束的 0-1 线性规划的完全正向表示
  • DOI:
    10.1016/j.orl.2013.08.008
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jianqiang Cheng;A. Lisser
  • 通讯作者:
    A. Lisser
A Second-Order Cone Programming Approximation to Joint Chance-Constrained Linear Programs
联合机会约束线性规划的二阶锥规划逼近
Purification of mono-saturated acid emsn-/em1,3 diacylglycerols: Effects of acyl migration on the crystallization behaviors and physical properties
单不饱和酸 emsn-/em1,3 二酰基甘油的纯化:酰基迁移对结晶行为和物理性质的影响
  • DOI:
    10.1016/j.lwt.2023.115105
  • 发表时间:
    2023-07-15
  • 期刊:
  • 影响因子:
    6.600
  • 作者:
    Yilin Mao;Yee-Ying Lee;Jianqiang Cheng;Yong Wang;Zhen Zhang
  • 通讯作者:
    Zhen Zhang

Jianqiang Cheng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

The Heterogenous Impact of Monetary Policy on Firms' Risk and Fundamentals
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
基于时间序列间分位相依性(quantile dependence)的风险值(Value-at-Risk)预测模型研究
  • 批准号:
    71903144
  • 批准年份:
    2019
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目
RISK通路在胃泌素介导的心脏缺血再灌注损伤保护中的作用研究
  • 批准号:
    81800239
  • 批准年份:
    2018
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
异氟烷基于TLR4/RISK/NF-κB调控糖尿病缺血性脑卒中后NLRP3炎症小体形成的机制研究
  • 批准号:
    81771232
  • 批准年份:
    2017
  • 资助金额:
    54.0 万元
  • 项目类别:
    面上项目
Notch1与RISK/SAFE/HIF-1α信号通路整合在I-postC保护中的作用及其机制
  • 批准号:
    81260024
  • 批准年份:
    2012
  • 资助金额:
    50.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Theoretical Foundations for Risk-Averse Control Engineering
风险规避控制工程的理论基础
  • 批准号:
    RGPIN-2022-04140
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Grants Program - Individual
Partially Observable Risk-Averse Control Systems and Extensions
部分可观察的风险规避控制系统和扩展
  • 批准号:
    572633-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    University Undergraduate Student Research Awards
Theoretical Foundations for Risk-Averse Control Engineering
风险规避控制工程的理论基础
  • 批准号:
    DGECR-2022-00098
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Launch Supplement
Optimizing risk averse decisions in data-driven problems
优化数据驱动问题中的风险规避决策
  • 批准号:
    RGPIN-2022-05261
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Grants Program - Individual
A Unified Approach to Optimal Uncertainty Quantification and Risk-Averse Optimization withQuasi-Variational Inequality Constraints
具有拟变分不等式约束的最优不确定性量化和风险规避优化的统一方法
  • 批准号:
    423760521
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Priority Programmes
COLLABORATIVE RESEARCH: Data-Driven Risk-Averse Models and Algorithms for Power Generation Scheduling with Renewable Energy Integration
合作研究:数据驱动的可再生能源发电调度风险规避模型和算法
  • 批准号:
    2037539
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: Risk-Averse Control of Markov Systems with Model Uncertainty
协作研究:具有模型不确定性的马尔可夫系统的风险规避控制
  • 批准号:
    1907522
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: Risk-Averse Control of Markov Systems with Model Uncertainty
协作研究:具有模型不确定性的马尔可夫系统的风险规避控制
  • 批准号:
    1907568
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Mixed-Integer Programming Approaches for Risk-Averse Multicriteria Optimization
用于规避风险的多标准优化的混合整数规划方法
  • 批准号:
    1907463
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Dynamic Risk-Averse Optimization of Distributed Energy Resource Aggregators
分布式能源聚合器的动态风险规避优化
  • 批准号:
    1807536
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了