A Unified Approach to Optimal Uncertainty Quantification and Risk-Averse Optimization withQuasi-Variational Inequality Constraints

具有拟变分不等式约束的最优不确定性量化和风险规避优化的统一方法

基本信息

项目摘要

This proposal concerns optimization problems with random quasi-variational inequality (QVI) constraints of elliptic and parabolic type. The project is motivated by examples of application where parameters within QVIs are random variables and in many occasions their distribution is only partially known either by real measured data, or a priori possible scenarios. Since QVIs are non-convex, and non-smooth problems with (in general) multiple solutions, special mathematical machinery is proposed for the study of measurability and perturbation analysis of the random solution set, and the selection of particular solutions thereof. The optimization problem class consider in a unified fashion risk-averse optimization and optimal uncertainty quantification: While the former deals with measures of risk like the expected value of a certain quantity of interest, the latter takes into account that probability distributions may not be known exactly. Theoretical aspects involving existence of solutions and perturbation analysis are considered and at the same time solution algorithms for the random QVIs and the overall optimization problems are proposed. This further includes plans of discretization approaches that aim in benign scenarios to break the curse of dimensionality.
这一建议涉及椭圆型和抛物型随机拟变分不等式(QVI)约束的优化问题。该项目的动机是应用实例,其中QVI中的参数是随机变量,并且在许多情况下,它们的分布仅通过实际测量数据或先验可能的情景而部分知道。由于QVI是具有(一般)多解的非凸、非光滑问题,为了研究随机解集的可测性、摄动分析及其特解的选择,提出了特殊的数学机制。优化问题类统一考虑风险厌恶优化和最优不确定性量化:前者处理风险度量,如一定数量的兴趣的期望值,而后者考虑概率分布可能不是精确知道的。从理论上考虑了解的存在性和摄动分析,同时给出了随机QVI问题和全局优化问题的求解算法。这还包括以良性情景为目标的离散化方法计划,以打破维度诅咒。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Michael Hintermüller, since 12/2019其他文献

Professor Dr. Michael Hintermüller, since 12/2019的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

EnSite array指导下对Stepwise approach无效的慢性房颤机制及消融径线设计的实验研究
  • 批准号:
    81070152
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    面上项目

相似海外基金

A concept mapping approach to DevelOP a ToolkIt to iMprove medicAtion self-management for persons with spinaL cord injury (OPTIMAL-SCI)
开发工具包以改善脊髓损伤患者的药物自我管理的概念图方法 (OPTIMAL-SCI)
  • 批准号:
    495188
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Optimal control approach to machine learning with physical explainability
具有物理可解释性的机器学习最优控制方法
  • 批准号:
    23H01436
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
RI: Small: Collaborative Research: Evolutionary Approach to Optimal Morphology and Control of Transformable Soft Robots
RI:小型:协作研究:可变形软机器人的最佳形态和控制的进化方法
  • 批准号:
    2325491
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
LEAPS-MPS: Optimal Design of Therapeutic Phage Cocktails: a Data-Driven Mathematical Approach
LEAPS-MPS:治疗性噬菌体混合物的优化设计:数据驱动的数学方法
  • 批准号:
    2316631
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
A computational approach to optimal deactivation of cochlear implant electrodes
人工耳蜗植入电极最佳停用的计算方法
  • 批准号:
    10430378
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
ERI: Multiphysics cosimulation approach for optimal design of microgrid high frequency transformers
ERI:微电网高频变压器优化设计的多物理场协同仿真方法
  • 批准号:
    2138408
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Reinforcement learning approach to the optimal stopping problem
最优停止问题的强化学习方法
  • 批准号:
    RGPIN-2021-02760
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Sustainable Stormwater Management Approach: Optimal Implementation of Low Impact Development Systems
可持续雨水管理方法:低影响开发系统的优化实施
  • 批准号:
    RGPIN-2022-05461
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
A Novel Video-Based Intervention to Enhance Optimal Uptake of Malaria Preventive Therapy: A Pilot Study of a Health Educational Approach to Malaria Prevention during Pregnancy
一种新的基于视频的干预措施,以增强疟疾预防治疗的最佳吸收:妊娠期疟疾预防健康教育方法的试点研究
  • 批准号:
    10641780
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
A Novel Video-Based Intervention to Enhance Optimal Uptake of Malaria Preventive Therapy: A Pilot Study of a Health Educational Approach to Malaria Prevention during Pregnancy
一种新的基于视频的干预措施,以增强疟疾预防治疗的最佳吸收:妊娠期疟疾预防健康教育方法的试点研究
  • 批准号:
    10452773
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了