CAREER: In Silico Single-Molecule Force Spectroscopy
职业:计算机单分子力谱
基本信息
- 批准号:2143787
- 负责人:
- 金额:$ 81.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-01 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award is funded in part under the American Rescue Plan Act of 2021 (Public Law 117-2). Other funding was provided by the Molecular Biophysics Program in the Division of Molecular and Cellular Biosciences in the Directorate for Biological Sciences and by the Established Program to Stimulate Competitive Research (EPSCoR).Since the stone age, humans know that mechanical forces can be used to bend and break materials. Young children intuitively shape playdough, unaware that they are controlling shear-forces when deciding to tear or pinch the material, where the direction of applied force defines their effects. However, the outcomes of applied mechanical forces become much less intuitive if we zoom into biomolecules. In fact, chemistry at shear forces is quite intriguing, with relatively soft bonds becoming very strong depending on how force is applied to them. Such intriguing behavior is crucial for the inner workings of all cells, where proteins are often under the influence of mechanical forces. Frequently, the directionality and amplitude of these forces can regulate biological activities. In this project, the researchers are not only investigating the intriguing behavior of proteins that are mechanoactive, that is, that react differently depending on the forces applied on them, but also developing computational tools that make it possible to study them with atomic detail. Particularly, mechanoactive proteins that are found in the surface of both good and bad bacteria will be investigated to elucidate how they become extremally resilient to shear forces and allow infections to take place within our bodies. Additionally, new immersive technologies will be developed to observe these proteins under shear-force load, powering the “Immersive Biophysics on the Road” program, where tools and knowledge developed in this project will be taken to areas in Alabama that are historically underrepresented in STEM. An inflatable projection dome will then be used to teach the molecular mechanisms of life. The long-term goal of this project is to characterize, with atomic and sub-atomic resolution, the protein:protein interactions responsible for the remarkable mechanostability of extracellular protein complexes. The central hypothesis of this project is that evolution has created geometrical artifices that are used by different proteins to become stronger when under mechanical stress, and also modular and flexible when needed. This hypothesis is based on preliminary work that has shown a simple geometric mechanism responsible for mechanostability, but that is challenging to be achieved at the molecular level. Here, the rationale is that understanding the molecular details at play will allow for the manipulation of mechanostability; for guiding the development of molecules that can inhibit adhesion processes; and for proposing the development of biotechnology tools that could profit from the mechanostability of these proteins. These goals will be achieved by: 1. developing bioinformatic tools to resurrect cellulosomal proteins ancestors to understand how mechanostability evolved; 2. Investigating the mechanism by which staph bacteria form highly-stable bonds to the human extra-cellular matrix. Particularly, this project will employ a combination of classical molecular dynamics, hybrid quantum/classical calculations, and dimensionality reduction methods, in order to characterize sub-atomic properties of proteins under mechanical stress. Additionally, new molecular dynamics methods for analysis and visualization will be made easier by implementing them into graphical user interfaces. Most of the new implementations will be made into QwikMD, which will incorporate new methods for structure prediction based on artificial intelligence, as well as new immersive visualization renderings, which will allow for the use of portable planetarium-like domes and virtual reality headsets for science outreach.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项的部分资金来自2021年美国救援计划法案(公法117-2)。其他资金由生物科学理事会分子和细胞生物科学部的分子生物物理学计划和刺激竞争性研究的既定计划(EPSCoR)提供。自石器时代以来,人类就知道机械力可以用来弯曲和破坏材料。幼儿凭直觉塑造橡皮泥,不知道他们在决定撕裂或捏材料时控制剪切力,其中施加力的方向决定了它们的效果。然而,如果我们放大到生物分子,施加机械力的结果就变得不那么直观了。事实上,剪切力下的化学反应是非常有趣的,相对较软的键会变得非常强,这取决于力是如何施加到它们上的。这种有趣的行为对于所有细胞的内部运作至关重要,因为蛋白质经常受到机械力的影响。通常,这些力的方向性和幅度可以调节生物活动。在这个项目中,研究人员不仅研究了具有机械活性的蛋白质的有趣行为,也就是说,根据施加在它们身上的力而产生不同的反应,而且还开发了计算工具,使研究它们的原子细节成为可能。特别是,将研究在好细菌和坏细菌表面发现的机械活性蛋白质,以阐明它们如何对剪切力具有极强的弹性,并使感染在我们体内发生。此外,将开发新的沉浸式技术来观察剪切力负载下的这些蛋白质,为“沉浸式生物物理学在路上”计划提供动力,该项目中开发的工具和知识将被带到亚拉巴马历史上在STEM中代表性不足的地区。一个可充气的投影圆顶将被用来教授生命的分子机制。该项目的长期目标是以原子和亚原子分辨率表征负责细胞外蛋白质复合物的显着机械稳定性的蛋白质:蛋白质相互作用。该项目的核心假设是,进化创造了几何技巧,这些技巧被不同的蛋白质用来在机械压力下变得更强,并且在需要时也具有模块化和灵活性。这一假设是基于初步的工作,已经显示了一个简单的几何机制负责机械稳定性,但这是具有挑战性的实现在分子水平。在这里,基本原理是,了解在发挥作用的分子细节将允许操纵机械稳定性;指导分子的发展,可以抑制粘附过程;并提出生物技术工具的发展,可以从这些蛋白质的机械稳定性中获益。这些目标将通过以下方式实现:1。开发生物信息学工具以复活纤维素体蛋白质祖先,以了解机械稳定性如何进化; 2.研究葡萄球菌与人体细胞外基质形成高度稳定结合的机制。特别是,该项目将采用经典分子动力学,混合量子/经典计算和降维方法的组合,以表征机械应力下蛋白质的亚原子性质。此外,用于分析和可视化的新分子动力学方法将通过将其实现为图形用户界面而变得更容易。大多数新的实现将被制作成QwikMD,其中将包含基于人工智能的结构预测新方法,以及新的沉浸式可视化渲染,这将允许使用便携式天文馆-像圆顶和虚拟现实耳机的科学推广。这个奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fostering discoveries in the era of exascale computing: How the next generation of supercomputers empowers computational and experimental biophysics alike
- DOI:10.1016/j.bpj.2023.01.042
- 发表时间:2023-07-25
- 期刊:
- 影响因子:3.4
- 作者:Melo,Marcelo C. R.;Bernardi,Rafael C.
- 通讯作者:Bernardi,Rafael C.
Molecular Origins of Force-Dependent Protein Complex Stabilization during Bacterial Infections
- DOI:10.1021/jacs.2c07674
- 发表时间:2022-12-01
- 期刊:
- 影响因子:15
- 作者:Melo, Marcelo C. R.;Gomes, Diego E. B.;Bernardi, Rafael C.
- 通讯作者:Bernardi, Rafael C.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rafael Bernardi其他文献
Rafael Bernardi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
in silico生物分子网络动力学参数高速与高精度自动化估计的研究
- 批准号:31301100
- 批准年份:2013
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
In silico/In vitro偶联ACAT生理模型筛选药物及其制剂的生物利用度/生物等效性
- 批准号:81173009
- 批准年份:2011
- 资助金额:50.0 万元
- 项目类别:面上项目
相似海外基金
非典型相互作用を記述する3次元関数の算出とin silico SBDD/FBDD技術への応用
描述非典型相互作用的三维函数的计算及其在计算机SBDD/FBDD技术中的应用
- 批准号:
24K15167 - 财政年份:2024
- 资助金额:
$ 81.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A2M: Exploring in-silico predicted arms-races at the plant-pathogen interface
A2M:探索植物-病原体界面的计算机预测军备竞赛
- 批准号:
BB/Y000560/1 - 财政年份:2024
- 资助金额:
$ 81.54万 - 项目类别:
Research Grant
in-silicoファントムを用いた磁気神経イメージングの新しい磁場源解析法の研究
利用硅模型进行磁神经成像的新磁场源分析方法的研究
- 批准号:
24K15709 - 财政年份:2024
- 资助金额:
$ 81.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
ローターの位相シンギュラリティ類型化に基づく心房細動停止に向けたin silico研究
基于转子相位奇点分类的房颤终止计算机模拟研究
- 批准号:
24K15740 - 财政年份:2024
- 资助金额:
$ 81.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
多遺伝子座マイクロサテライト情報サービスとin silico多型解析ツールの展開
多位点微卫星信息服务和计算机多态性分析工具的开发
- 批准号:
24K09426 - 财政年份:2024
- 资助金额:
$ 81.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
グリオーマ幹細胞に対するin silico解析を用いた薬事承認薬による抗腫瘍効果の解明
使用计算机分析阐明药物批准药物对神经胶质瘤干细胞的抗肿瘤作用
- 批准号:
24K19524 - 财政年份:2024
- 资助金额:
$ 81.54万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ICIの有効性とirAE発症に関与する因子の解明 In silico解析を用いて
使用计算机分析阐明 ICI 有效性和 irAE 发生所涉及的因素
- 批准号:
24K18544 - 财政年份:2024
- 资助金额:
$ 81.54万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
TWINNING: Scalable technologies for creating virtual patient twin populations to accelerate in-silico enabled medical device innovation.
双胞胎:用于创建虚拟患者双胞胎群体的可扩展技术,以加速计算机模拟医疗设备创新。
- 批准号:
10103504 - 财政年份:2024
- 资助金额:
$ 81.54万 - 项目类别:
Collaborative R&D
Ex vivo-in silicoハイブリッドによるヒト胎児薬物移行の新解析プラットフォーム構築
利用离体-计算机混合构建人胎儿药物转移的新分析平台
- 批准号:
24K02200 - 财政年份:2024
- 资助金额:
$ 81.54万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
安全な抗菌ペプチドのin silico分子設計へ資する分子動力学法と機械学習による研究
使用分子动力学方法和机器学习的研究有助于安全抗菌肽的计算机分子设计
- 批准号:
24K18085 - 财政年份:2024
- 资助金额:
$ 81.54万 - 项目类别:
Grant-in-Aid for Early-Career Scientists