CAREER: Magnetic topological phases in dissipative systems

职业:耗散系统中的磁拓扑相

基本信息

  • 批准号:
    2144086
  • 负责人:
  • 金额:
    $ 51.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-02-01 至 2027-01-31
  • 项目状态:
    未结题

项目摘要

This award is funded in part under the American Rescue Plan Act of 2021 (Public Law 117-2).NONTECHNICAL SUMMARY This CAREER award supports theoretical research and education to advance the fundamental understanding of topological phases in magnetic materials. Topology is a branch of mathematics that addresses properties that cannot be altered by distorting a system. The application of topology to condensed matter systems has led to the discovery of many new phenomena and topological materials, for example topological insulators. The bulk of these materials are insulators, and so, do not conduct electricity. However, they are conducting on their surfaces and corners. Topology requires that these "edge states" are present no matter how disordered the material might be. While past research efforts have been focused on topological phases in which the system’s energy is conserved, recent years have witnessed a burst of research on systems where, owing to significant interactions with the environment, energy may be gained or lost. The PI aims to expand this newly established theoretical framework to address the topological properties of magnetic systems. Topological magnetic materials have been proposed as building blocks for numerous technological applications and might serve as solid-state platforms for observing novel dissipative topological phenomena. However, harnessing their potential requires a better understanding of the interplay between their topology and their ubiquitous dissipative interactions with the surrounding crystalline environment. The PI will explore realistic potential platforms of dissipative topological magnetic phenomena and will develop new theoretical techniques to provide predictions that can guide current and future experimental explorations. In addition to mentoring and training graduate and undergraduate students participating in this research, the PI plans to develop a pedagogical course on the recent developments in the field of spintronics. As co-founder of the Women in Physics Society at Boston College, the PI will continue to create new networking opportunities for undergraduate and graduate women. Furthermore, the PI aims to develop a workshop for junior researchers from underdeveloped countries.TECHNICAL SUMMARY This CAREER award supports theoretical research and education to advance the fundamental understanding of magnetic topological phases in dissipative systems. This project is aimed to investigate magnetic topological phases within the framework of non-Hermitian topological theories and to explore spin-independent mechanisms for the generation of topologically nontrivial magnon bands. Specifically, the project consists of three closely related research efforts: 1) investigating the fundamental properties of topologically-protected non-Hermitian magnon edge states and exploring experimentally feasible platforms to realize and probe topological magnon transport unhindered by nonlinear spin bulk dynamics; 2) identifying the essential ingredients for the breakdown of the bulk-edge correspondence in magnetic systems and developing new analytical techniques to predict experimental observables of the magnetic skin effect; 3) exploring the emergence and the transport properties of topologically-protected non-Hermitian magnon-polaron edge states in ionic crystals. In addition to mentoring and training graduate and undergraduate students participating in this research, the PI plans to develop a pedagogical course at the graduate level on the recent developments in the field of spintronics. As co-founder of the Women in Physics Society at Boston College, the PI will continue to create new networking opportunities for undergraduate and graduate women. Furthermore, the PI aims to develop a workshop for junior researchers from underdeveloped countries.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项部分由2021年美国救援计划法案(公法117-2)资助。该职业奖支持理论研究和教育,以促进对磁性材料拓扑相的基本理解。拓扑学是数学的一个分支,研究不能通过扭曲系统来改变的特性。拓扑学在凝聚态体系中的应用导致了许多新现象和拓扑材料的发现,例如拓扑绝缘体。这些材料大部分是绝缘体,因此不导电。然而,它们在表面和角落都是导电的。拓扑学要求无论材料多么无序,这些“边缘状态”都存在。虽然过去的研究工作主要集中在系统能量守恒的拓扑阶段,但近年来,由于与环境的重要相互作用,能量可能获得或损失的系统研究激增。PI旨在扩展这一新建立的理论框架,以解决磁系统的拓扑特性。拓扑磁性材料已被提出作为许多技术应用的构建块,并可能作为观察新型耗散拓扑现象的固态平台。然而,利用它们的潜力需要更好地理解它们的拓扑结构和它们与周围晶体环境的无处不在的耗散相互作用之间的相互作用。PI将探索耗散拓扑磁现象的现实潜在平台,并将开发新的理论技术,以提供可以指导当前和未来实验探索的预测。除了指导和培训参与这项研究的研究生和本科生外,PI还计划开发一门关于自旋电子学领域最新发展的教学课程。作为波士顿学院女性物理协会的联合创始人,PI将继续为本科生和研究生女性创造新的交流机会。此外,PI的目标是为来自不发达国家的初级科学家建立一个讲习班。该职业奖支持理论研究和教育,以促进对耗散系统中磁拓扑相的基本理解。本项目旨在研究非厄米拓扑理论框架内的磁拓扑相,并探索拓扑非平凡磁振子带产生的自旋无关机制。具体而言,该项目包括三个密切相关的研究工作:1)研究拓扑保护的非厄米磁振子边缘态的基本性质,探索实验上可行的平台,以实现和探测非线性自旋体动力学不阻碍的拓扑磁振子输运;2)确定磁系统中体边对应被击穿的基本成分,并开发新的分析技术来预测磁趋肤效应的实验观测值;3)探索离子晶体中拓扑保护的非厄米磁非极化子边缘态的出现及其输运性质。除了指导和培训参与这项研究的研究生和本科生外,PI还计划在研究生阶段开设一门关于自旋电子学领域最新发展的教学课程。作为波士顿学院女性物理协会的联合创始人,PI将继续为本科生和研究生女性创造新的交流机会。此外,PI的目标是为来自不发达国家的初级科学家建立一个讲习班。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multitude of exceptional points in van der Waals magnets
  • DOI:
    10.1103/physrevb.106.214432
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Xin Li;Kuangyin Deng;B. Flebus
  • 通讯作者:
    Xin Li;Kuangyin Deng;B. Flebus
Nonlinear dynamics of the non-Hermitian Su-Schrieffer-Heeger model
  • DOI:
    10.1103/physrevb.105.104433
  • 发表时间:
    2022-03-29
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Gunnink, Pieter M.;Flebus, Benedetta;Duine, Rembert A.
  • 通讯作者:
    Duine, Rembert A.
Exceptional points as signatures of dynamical magnetic phase transitions
  • DOI:
    10.1103/physrevb.107.l100402
  • 发表时间:
    2023-03-06
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Deng, Kuangyin;Li, Xin;Flebus, Benedetta
  • 通讯作者:
    Flebus, Benedetta
Recent advances in magnonics
磁振子学的最新进展
  • DOI:
    10.1063/5.0153424
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Flebus, B.;Rezende, S. M.;Grundler, D.;Barman, A.
  • 通讯作者:
    Barman, A.
Non-Hermitian skin effect in magnetic systems
  • DOI:
    10.1103/physrevb.105.l180406
  • 发表时间:
    2022-05-10
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Deng, Kuangyin;Flebus, Benedetta
  • 通讯作者:
    Flebus, Benedetta
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Benedetta Flebus其他文献

Magnon-photon coupling in an opto-electro-magnonic oscillator
光电磁振子中的磁子-光子耦合
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y. Xiong;Jayakrishnan M. P. Nair;Andrew Christy;J. Cahoon;Amin Pishehvar;Xufeng Zhang;Benedetta Flebus;Wei Zhang
  • 通讯作者:
    Wei Zhang
マグノン-フォノン結合誘起スピンゼーベック効果の観測
磁振子-声子耦合引起的自旋塞贝克效应的观察
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    吉川貴史;Ka Shen;Benedetta Flebus;Rembert A. Duine;内田健一;Zhiyong Qiu;Gerrit E. W. Bauer;齊藤英治
  • 通讯作者:
    齊藤英治
Advanced hydride research for energy storages
先进的氢化物储能研究
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Takashi Kikkawa;Ka Shen;Benedetta Flebus;Rembert A. Duine;Ken-ichi Uchida;Zhiyong Qiu;G. E. W. Bauer;and Eiji Saitoh;折茂慎一
  • 通讯作者:
    折茂慎一

Benedetta Flebus的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Exploring Topological States in 2D Magnetic Materials
探索二维磁性材料的拓扑状态
  • 批准号:
    2882195
  • 财政年份:
    2023
  • 资助金额:
    $ 51.8万
  • 项目类别:
    Studentship
Quantum transport study of axion dynamics in magnetic topological systems
磁拓扑系统中轴子动力学的量子输运研究
  • 批准号:
    22KF0111
  • 财政年份:
    2023
  • 资助金额:
    $ 51.8万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Exploring Emergent Magnetic Topological States in Three-Dimensional Magnetic Topological Insulator Multilayers
探索三维磁拓扑绝缘体多层中的涌现磁拓扑态
  • 批准号:
    2241327
  • 财政年份:
    2023
  • 资助金额:
    $ 51.8万
  • 项目类别:
    Standard Grant
Exploration of Emergent Functional Properties in Topological Semimetals with Strong Magnetic Coupling
强磁耦合拓扑半金属的涌现功能特性探索
  • 批准号:
    22KJ0212
  • 财政年份:
    2023
  • 资助金额:
    $ 51.8万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Simultaneous optimization of crystal and magnetic structures: Applications to topological magnetic electrides
晶体和磁性结构的同时优化:在拓扑磁性电子化合物中的应用
  • 批准号:
    22KJ1151
  • 财政年份:
    2023
  • 资助金额:
    $ 51.8万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
CAREER: Synthetic design of structure-inspired magnetic topological materials
职业:受结构启发的磁性拓扑材料的综合设计
  • 批准号:
    2343536
  • 财政年份:
    2023
  • 资助金额:
    $ 51.8万
  • 项目类别:
    Continuing Grant
Giant magnetic-thermoelectricity in topological materials
拓扑材料中的巨磁热电
  • 批准号:
    DP230102221
  • 财政年份:
    2023
  • 资助金额:
    $ 51.8万
  • 项目类别:
    Discovery Projects
International collaboration on topological magnetic structures and excitations in quantum magnets using neutron scattering
利用中子散射进行量子磁体拓扑磁结构和激发的国际合作
  • 批准号:
    23KK0051
  • 财政年份:
    2023
  • 资助金额:
    $ 51.8万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
A time-resolved exploration of topological magnetic systems
拓扑磁系统的时间分辨探索
  • 批准号:
    2888228
  • 财政年份:
    2023
  • 资助金额:
    $ 51.8万
  • 项目类别:
    Studentship
Topological Transports Emerging From Vorticity, Magnetic Field, and Chirality
涡度、磁场和手性产生的拓扑输运
  • 批准号:
    22H01216
  • 财政年份:
    2022
  • 资助金额:
    $ 51.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了