CAS-Climate: CAREER: Analytical methods for understanding and predicting agricultural flash droughts in a changing climate

CAS-气候:职业:了解和预测气候变化下农业突发干旱的分析方法

基本信息

  • 批准号:
    2144293
  • 负责人:
  • 金额:
    $ 57.47万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-05-01 至 2027-04-30
  • 项目状态:
    未结题

项目摘要

Flash drought is an extreme hydro-climate event characterized by sudden onset, rapid intensification, and devastating impact on communities. It rapidly depletes soil moisture, posing significant water and heat stresses for plant growth and agricultural productions over non-irrigated lands. Flash drought is challenging to predict because of its fast onset and development, and complex land-ocean-atmosphere factors that contribute to or affect their formation. This project of interlinked activities study the causes and predictability of flash droughts, improve their forecasts and projections, assess their impact on climate change, and promote education and outreach. The proposed research and educational programs will benefit society, especially agricultural communities vulnerable to droughts, and pave the way towards better-informed drought management, climate adaptation and improved resilience.The research will disentangle underlying drivers of agricultural flash droughts using machine learning-based causal inference analysis, develop and evaluate agricultural flash drought forecasts at the sub-seasonal timescale using deep learning approaches, and assess changes in agricultural flash drought under contemporary and future climate, based on coupled general circulation models large ensembles. These research objectives will be integrated with an education plan focusing on developing and implementing innovative lessons on drought through the 4-H (“head, heart, hands, and health”) program, conducting workshops on sub-seasonal forecasts and decision making with agricultural stakeholders through the climate learning network, mentoring undergraduate and graduate students, and involving graduate students in educational activities besides research. Deliverables from this project will contribute to an improved understanding and predictions of droughts at the regional scale and will provide a framework for analyses of a broader class of extreme climate events, which will be broadly applicable at different locations around the world. This award is co-funded by the Hydrologic Sciences and Climate and Large-Scale Dynamics programs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
暴旱是一种极端水文气候事件,其特点是突然发生,迅速加剧,并对社区造成破坏性影响。它迅速耗尽土壤水分,对非灌溉土地上的植物生长和农业生产造成严重的水和热压力。由于突发干旱的发生和发展迅速,以及促成或影响其形成的复杂的陆地-海洋-大气因素,预测突发干旱具有挑战性。这一相互关联的活动项目研究突发干旱的原因和可预测性,改进其预测和预测,评估其对气候变化的影响,并促进教育和宣传。拟议的研究和教育计划将造福社会,特别是易受干旱影响的农业社区,并为更明智的干旱管理、气候适应和提高复原力铺平道路。该研究将使用基于机器学习的因果推理分析来解开农业闪电干旱的潜在驱动因素,使用深度学习方法开发和评估亚季节时间尺度的农业闪电干旱预测,并基于耦合的大气环流模型大集合,评估当前和未来气候下农业暴旱的变化。这些研究目标将与一项教育计划相结合,该计划侧重于通过4-H(“头、心、手和健康”)方案制定和实施关于干旱的创新课程,通过气候学习网络与农业利益攸关方举办关于亚季节预报和决策的讲习班,指导本科生和研究生,并让研究生参与研究之外的教育活动。这一项目的成果将有助于更好地了解和预测区域范围内的干旱,并将为分析更广泛的极端气候事件提供一个框架,该框架将广泛适用于世界各地。该奖项由水文科学、气候和大规模动力学项目共同资助。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Projected mid-century rainfall erosivity under climate change over the southeastern United States
气候变化下美国东南部本世纪中叶的降雨侵蚀力预测
  • DOI:
    10.1016/j.scitotenv.2022.161119
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Takhellambam, Bijoychandra S.;Srivastava, Puneet;Lamba, Jasmeet;McGehee, Ryan P.;Kumar, Hemendra;Tian, Di
  • 通讯作者:
    Tian, Di
On deep learning-based bias correction and downscaling of multiple climate models simulations
  • DOI:
    10.1007/s00382-022-06277-2
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Fang Wang;D. Tian
  • 通讯作者:
    Fang Wang;D. Tian
County level calibration strategy to evaluate peanut irrigation water use under different climate change scenarios
  • DOI:
    10.1016/j.eja.2022.126693
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Xiaoxing Zhen;Weige Huo;Di Tian;Qiong Zhang;A. Sanz‐Saez;Chen Chen-Chen;W. Batchelor
  • 通讯作者:
    Xiaoxing Zhen;Weige Huo;Di Tian;Qiong Zhang;A. Sanz‐Saez;Chen Chen-Chen;W. Batchelor
Synergistic contributions of climate and management intensifications to maize yield trends from 1961 to 2017
  • DOI:
    10.1088/1748-9326/acb27f
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    H. Medina;D. Tian
  • 通讯作者:
    H. Medina;D. Tian
Customized deep learning for precipitation bias correction and downscaling
  • DOI:
    10.5194/gmd-16-535-2023
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    5.1
  • 作者:
    Fang Wang;D. Tian;M. Carroll
  • 通讯作者:
    Fang Wang;D. Tian;M. Carroll
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Di Tian其他文献

Compact instrumentation and (analytical) performance evaluation for laser-induced breakdown spectroscopy
激光诱导击穿光谱的紧凑型仪器和(分析)性能评估
  • DOI:
    10.1080/10739149.2018.1469146
  • 发表时间:
    2018-09
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Guangmeng Guo;Guanghui Niu;Qingyu Lin;Shuai Wang;Di Tian;Yixiang Duan
  • 通讯作者:
    Yixiang Duan
Research on Electrospun Nanofiber-Based Binder-Free Electrode Materials for Supercapacitors
静电纺纳米纤维基超级电容器无粘合剂电极材料的研究
  • DOI:
    10.3866/pku.whxb201904056
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    10.9
  • 作者:
    Di Tian;Xiaofeng Lu;Weimo Li;Yue Li;Ce Wang
  • 通讯作者:
    Ce Wang
Interactive effects of plant density and nitrogen availability on the biomass production and leaf stoichiometry of Arabidopsis thaliana
植物密度和氮素有效性对拟南芥生物量生产和叶片化学计量的交互影响
  • DOI:
    10.1093/jpe/rtac101
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Zhengbing Yan;Di Tian;Hanyue Huang;Yuanfeng Sun;Xinghui Hou;Wenxuan Han;Yalong Guo;Jingyun Fang
  • 通讯作者:
    Jingyun Fang
Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Case 38-2003. A 12-year-old girl with fever and coma.
马萨诸塞州总医院的病例记录。
An Improved Circle Detection Method Based on Right Triangles Inscribed in a Circle
一种改进的基于圆内接直角三角形的圆检测方法

Di Tian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CAREER: CAS-Climate: Addressing Climate Change Impacts on Urban Water Affordability
职业:CAS-气候:应对气候变化对城市水承受能力的影响
  • 批准号:
    2337668
  • 财政年份:
    2024
  • 资助金额:
    $ 57.47万
  • 项目类别:
    Continuing Grant
CAREER: CAS-Climate -- A modeling framework to understand the environmental and equity impacts of building decarbonization retrofits
职业:CAS-Climate——了解建筑脱碳改造对环境和公平影响的建模框架
  • 批准号:
    2339386
  • 财政年份:
    2024
  • 资助金额:
    $ 57.47万
  • 项目类别:
    Continuing Grant
CAREER: CAS- Climate -- Air-quality-related environmental justice impacts of decarbonization scenarios
职业:CAS-气候——脱碳情景与空气质量相关的环境正义影响
  • 批准号:
    2339462
  • 财政年份:
    2024
  • 资助金额:
    $ 57.47万
  • 项目类别:
    Continuing Grant
CAS-Climate: CAREER: A Unified Zero-Carbon-Driven Design Framework for Accelerating Power Grid Deep Decarbonization (ZERO-ACCELERATOR)
CAS-气候:职业:加速电网深度脱碳的统一零碳驱动设计框架(零加速器)
  • 批准号:
    2338158
  • 财政年份:
    2024
  • 资助金额:
    $ 57.47万
  • 项目类别:
    Continuing Grant
CAREER: CAS-Climate: Multiscale Data and Model Synthesis Informed Approach for Assessing Climate Resilience of Crop Production Systems
职业:CAS-气候:用于评估作物生产系统气候适应能力的多尺度数据和模型综合知情方法
  • 批准号:
    2339529
  • 财政年份:
    2024
  • 资助金额:
    $ 57.47万
  • 项目类别:
    Continuing Grant
CAREER: CAS-Climate: Forecast-informed Flexible Reservoir System Modeling Enabled by Artificial Intelligence Algorithms Using Subseasonal-to-Seasonal Hydroclimatological Forecasts
职业:CAS-气候:利用次季节到季节水文气候预测的人工智能算法实现基于预测的灵活水库系统建模
  • 批准号:
    2236926
  • 财政年份:
    2023
  • 资助金额:
    $ 57.47万
  • 项目类别:
    Continuing Grant
CAREER: CAS-Climate: Environmental Sustainability of Combined versus Separate Sewer Systems along the U.S. West Coast
职业:CAS-气候:美国西海岸联合下水道系统与独立下水道系统的环境可持续性
  • 批准号:
    2239602
  • 财政年份:
    2023
  • 资助金额:
    $ 57.47万
  • 项目类别:
    Continuing Grant
CAREER: CAS-Climate: Sustainable Design Principles for Emerging Photovoltaics
职业:CAS-气候:新兴光伏发电的可持续设计原则
  • 批准号:
    2350522
  • 财政年份:
    2023
  • 资助金额:
    $ 57.47万
  • 项目类别:
    Continuing Grant
CAREER: CAS-Climate: Sustainable Design Principles for Emerging Photovoltaics
职业:CAS-气候:新兴光伏发电的可持续设计原则
  • 批准号:
    2239755
  • 财政年份:
    2023
  • 资助金额:
    $ 57.47万
  • 项目类别:
    Continuing Grant
CAREER: CAS-Climate: Neighborhood-scale Assessment of the Air Quality Co-Benefits and Tradeoffs of Transportation Electrification
职业:CAS-气候:交通电气化空气质量协同效益和权衡的社区规模评估
  • 批准号:
    2239834
  • 财政年份:
    2023
  • 资助金额:
    $ 57.47万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了