CAREER: Low-Loss Spintronic Devices with Vertically Engineered Magnets

职业:具有垂直设计磁体的低损耗自旋电子器件

基本信息

项目摘要

In personal computers and data centers, information is often stored in magnetic films where the two digital states (“0” and “1”) are represented by opposite magnetization directions. Switching the magnetization with low loss (minimal wasted energy) is key to developing energy-efficient digital memory devices. In recent years, an effect called “spin-orbit torque” has been envisioned as a promising way to switch next-generation magnetic memories. However, the outstanding problem is that stronger spin-orbit torques require extremely thin, lossy magnetic films, in which switching involves a large amount of wasted energy. The proposed research will resolve this longstanding problem by developing a new family of magnetic films with tailored chemical composition profiles, which simultaneously enable strong spin-orbit torques and low loss. A successful outcome of this research will improve the energy efficiency of spin-orbit-torque magnetic memories by more than a hundredfold. In addition, research will advance the basic understanding of how spin-orbit torques and losses arise in magnetic materials, with broader applications in not only digital memories but also brain-inspired and quantum computing technologies. Moreover, it is proposed to develop a hands-on in-class activity for elementary school students to build audio speakers with inexpensive materials. This activity will help students develop a long-lasting appreciation for how the physical concepts of electricity, magnetism, and sound apply to everyday technologies. Spin-orbit torque (SOT) devices for memory and computing applications are typically bilayers, consisting of a magnetic film interfaced with a spin-orbit material. The problem with this device structure is that stronger SOTs require thinner magnets with thicknesses down to ~1 nm, but thinner magnets exhibit higher damping that results in high power consumption and poor performance. The proposed research will address this longstanding problem by simultaneously engineering strong SOTs and low damping in several-nm-thick, single-layer magnetic metal films. The research will take a fundamentally different approach to symmetry breaking, which is an essential ingredient for the emergence of SOTs. Specifically, in contrast to the conventional bilayers where symmetry is broken at film interfaces, the proposed approach deliberately breaks symmetry within the magnetic film itself – via a continuous compositional gradient along the thickness axis. Such bulk symmetry breaking is hypothesized to yield strong SOTs directly within a thick, low-damping magnetic film. The objectives of this research are to: (1) grow and characterize vertically graded magnetic films and determine how their compositions and structures impact SOTs and damping; and (2) quantify how the SOTs and damping of vertically graded magnets impact the performance of spintronic memories, oscillators, and spin-wave channels. A successful outcome of this research will enable transformative advances in SOT-driven devices – including two-orders-of-magnitude lower power dissipation, along with higher stability, higher signal output, and excellent compatibility with commercial fabrication processes. More broadly, this research will catalyze device development that leverages spin-orbit phenomena in graded materials, which have the potential to supersede heterostructures relying on atomically sharp interfaces.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在个人计算机和数据中心中,信息通常存储在磁性薄膜中,其中两个数字状态(“0”和“1”)由相反的磁化方向表示。以低损耗(最小的浪费能量)切换磁化是开发节能数字存储器件的关键。近年来,一种被称为“自旋-轨道力矩”的效应被认为是转换下一代磁存储器的一种有前途的方法。然而,突出的问题是,更强的自旋-轨道转矩需要极薄的有损耗的磁性薄膜,其中切换涉及大量浪费的能量。拟议的研究将通过开发一种具有定制化学成分分布的新系列磁性薄膜来解决这个长期存在的问题,同时实现强自旋轨道扭矩和低损耗。这项研究的成功结果将使自旋轨道扭矩磁存储器的能量效率提高一百多倍。此外,研究将推进对磁性材料中自旋轨道扭矩和损耗如何产生的基本理解,不仅在数字存储器中,而且在大脑启发和量子计算技术中具有更广泛的应用。此外,建议为小学生开发一个动手的课堂活动,用廉价的材料制作音频扬声器。这项活动将帮助学生培养对电,磁和声音的物理概念如何应用于日常技术的长期欣赏。用于存储器和计算应用的自旋轨道转矩(SOT)器件通常是双层,由与自旋轨道材料接合的磁性膜组成。这种器件结构的问题在于,更强的SOT需要厚度低至~1 nm的更薄的磁体,但是更薄的磁体表现出更高的阻尼,这导致高功耗和差的性能。拟议的研究将通过在几纳米厚的单层磁性金属薄膜中同时设计强SOT和低阻尼来解决这个长期存在的问题。这项研究将采取一种根本不同的方法来研究对称性破缺,这是SOT出现的一个重要因素。具体地,与在膜界面处对称性被破坏的常规双层相反,所提出的方法故意破坏磁性膜本身内的对称性-经由沿厚度轴沿着的连续组成梯度。假设这种体对称性破缺直接在厚的低阻尼磁膜内产生强SOT。本研究的目标是:(1)生长和表征垂直梯度磁性薄膜,并确定其成分和结构如何影响SOT和阻尼;(2)量化垂直梯度磁体的SOT和阻尼如何影响自旋电子存储器,振荡器和自旋波通道的性能。这项研究的成功成果将使SOT驱动器件取得革命性进展,包括两个数量级的低功耗,沿着更高的稳定性,更高的信号输出,以及与商业制造工艺的良好兼容性。更广泛地说,这项研究将促进利用梯度材料中的自旋轨道现象的器件开发,这有可能取代依赖于原子尖锐界面的异质结构。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantifying the orbital-to-spin moment ratio under dynamic excitation
量化动态激励下的轨道与自旋矩比
  • DOI:
    10.1063/5.0198326
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Emori, Satoru;Maizel, Rachel E.;Street, Galen T.;Jones, Julia L.;Arena, Dario A.;Shafer, Padraic;Klewe, Christoph
  • 通讯作者:
    Klewe, Christoph
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Satoru Emori其他文献

Satoru Emori的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Satoru Emori', 18)}}的其他基金

Collaborative Research: Large-Amplitude, Easy-Plane Spin-Orbit Torque Oscillators
合作研究:大振幅、简易平面自旋轨道扭矩振荡器
  • 批准号:
    2236160
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Interaction of Coherent Electronic Spin Current with Antiferromagnetic Order
相干电子自旋流与反铁磁序的相互作用
  • 批准号:
    2003914
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant

相似国自然基金

MSCEN聚集体抑制CD127low单核细胞铜死亡治疗SLE 的机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
CD9+CD55low脂肪前体细胞介导高脂诱导脂肪组织炎症和2型糖尿病的作用和机制研究
  • 批准号:
    82270883
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
新型PDL1+CXCR2low中性粒细胞在脉络膜新生血管中的作用及机制研究
  • 批准号:
    82271095
  • 批准年份:
    2022
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目
CD21low/-CD23-B细胞亚群在间质干细胞治疗慢性移植物抗宿主病中的作用机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
探究Msi1+Lgr5neg/low肠道干细胞抵抗辐射并驱动肠上皮再生的新机制
  • 批准号:
    82270588
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
m6A去甲基化酶FTO通过稳定BRD9介导表观重塑在HIF2α(low/-)肾透明细胞癌中的作用机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    54.7 万元
  • 项目类别:
    面上项目
circEFEMP1招募PRC2促进HOXA6启动子组蛋白甲基化修饰调控Claudin4-Low型TNBC迁移侵袭和转移的作用机制
  • 批准号:
    82002807
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
上皮间质转化在Numb-/low前列腺癌细胞雄激素非依赖性中的作用及机制
  • 批准号:
    82003061
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Bach2调控CD45RA-Foxp3low T细胞影响B细胞功能及其在系统性红斑狼疮中作用的机制研究
  • 批准号:
    81873863
  • 批准年份:
    2018
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目

相似海外基金

Development of a low-pressure loss air purification device using rotating porous media and a proposal for its use in ventilation systems
使用旋转多孔介质的低压损失空气净化装置的开发及其在通风系统中的使用建议
  • 批准号:
    24K17404
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: FuSe: Thermal Co-Design for Heterogeneous Integration of Low Loss Electromagnetic and RF Systems (The CHILLERS)
合作研究:FuSe:低损耗电磁和射频系统异构集成的热协同设计(CHILLERS)
  • 批准号:
    2329206
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: Thermal Co-Design for Heterogeneous Integration of Low Loss Electromagnetic and RF Systems (The CHILLERS)
合作研究:FuSe:低损耗电磁和射频系统异构集成的热协同设计(CHILLERS)
  • 批准号:
    2329208
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Extremely low energy loss bipolar power semiconductor device
极低能量损耗的双极功率半导体器件
  • 批准号:
    23K03795
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Ultra-low-loss fluoride glass optical fibres for the future global network
用于未来全球网络的超低损耗氟化物玻璃光纤
  • 批准号:
    LP220100403
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Linkage Projects
Collaborative Research: FuSe: Thermal Co-Design for Heterogeneous Integration of Low Loss Electromagnetic and RF Systems (The CHILLERS)
合作研究:FuSe:低损耗电磁和射频系统异构集成的热协同设计(CHILLERS)
  • 批准号:
    2329207
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Research on magnetic loaded rectangular wires for low-loss and miniaturization of magnetic components
磁性元件低损耗、小型化的磁加载扁线研究
  • 批准号:
    22KJ1497
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development and performance evaluation of a compact low-loss five-axis active controlled magnetic bearings
紧凑型低损耗五轴主动控制磁力轴承的研制与性能评估
  • 批准号:
    23K03737
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
SBIR Phase I: Ultra-low loss beamformer and combiner-first technology for lower power, consumption phased arrays
SBIR 第一阶段:超低损耗波束形成器和组合器优先技术,用于降低功耗、消耗相控阵
  • 批准号:
    2335496
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Low loss transport of slow neutrons with precision phase space manipulation
通过精确相空间操纵实现慢中子的低损耗传输
  • 批准号:
    23H03659
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了