Collaborative Research: FuSe: Thermal Co-Design for Heterogeneous Integration of Low Loss Electromagnetic and RF Systems (The CHILLERS)

合作研究:FuSe:低损耗电磁和射频系统异构集成的热协同设计(CHILLERS)

基本信息

项目摘要

The aim of this project is to advance the tools and technology used to design and build high frequency radar and communication systems. Of particular interest are systems that operate at high power levels and require some form of cooling to maximize operational lifetime and efficiency. The research will be conducted with simultaneous consideration of electrical, mechanical and thermal design using a team-based co-design methodology. The potential applications of the proposed research include next generation wireless communications and sensing (radar) for land- and space-based platforms, especially those operating in harsh environments. A broader aspect of the research is understanding the opportunities to harness advanced methods to accelerate the modeling and design of such complex systems. Because of the uniqueness of innovation in this area, it is of particular importance that a strategic educational training program is integrated into the research effort. To support development of a diverse, well-trained workforce the project will include an educational outreach program for 7th-12th grade students that is supported by undergraduate and graduate students participating in service-based learning (SBL) activities. The SBL activities will integrate the research and education activities into the outreach effort. The activities will also leverage a national model for advanced manufacturing education and include participants from historically marginalized groups, and the outcomes will be evaluated using formative and summative assessments. The project will focus on achieving advanced function and high-performance mm-wave transmitter unit cells through heterogeneous integration of bare die power amplifiers, packaged integrated circuits (e.g., beamforming IC for programmable phased array), integrated passives for DC biasing, and advanced thermal management systems. The investigation will include the co-design of the thermal, 3D interposer and electromagnetic front-end systems using a tool that combines numerical thermal and electromagnetic simulators and provides a powerful new specifications-to-CAD capability. The fabrication processes may include one of multiple additive manufacturing and/or thin-film microfabrication methods. For the packaged-integrated thermal management system, the project will build on a foundational capability in additive manufacturing to investigate a new approach intended to increase the achievable mm-wave power density by potentially multiple orders of magnitude over current state of the art for the studied class of low-cost 3D packages. In order to meet this goal, a formal co-design methodology will be leveraged along with multi-fidelity Bayesian co-optimization of thermal, interposer and EM sub-systems. This design and optimization process will be a useful tool to advance the field of 3D mm-wave packages with heterogeneous integration requirements. Environmental impact is a critical objective function for the PIs and will be addressed through improvements to system reliability (longer operational lifecycles and reduced premature equipment retirement), material selection, minimizing energy consumption, and 2nd law efficiency analysis. The potential applications of the proposed research include next generation wireless communications and sensing (radar) for land- and space-based platforms, especially those operating in harsh environments. The specifications-to-CAD tool will help to extend the packaging and thermal management principles into a broad range of applications beyond those focused upon herein. The research will also expand the utility of sustainable, low cost and customizable additive manufacturing processes to new applications including prototyping and potentially low- to medium-scale manufacturing for advanced mm-wave systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的目的是推进设计和建立高频雷达和通信系统的工具和技术。特别有趣的是,在高功率水平上运行并需要某种形式的冷却系统以最大程度地提高运营寿命和效率。该研究将通过使用基于团队的共同设计方法同时考虑电气,机械和热设计。拟议研究的潜在应用包括下一代无线通信和陆地和空间平台的传感(雷达),尤其是在恶劣环境中运行的平台。该研究的一个更广泛的方面是了解利用高级方法加速这种复杂系统的建模和设计的机会。由于该领域的创新独特性,因此将战略性教育培训计划纳入研究工作尤其重要。为了支持多样化,训练有素的劳动力的发展,该项目将包括针对7至12年级学生的教育外展计划,该计划受到参加基于服务的学习(SBL)活动的本科生和研究生的支持。 SBL活动将将研究和教育活动纳入外展工作。这些活动还将利用国家模型进行高级制造教育,并包括来自历史边缘化群体的参与者,并将使用形成性和总结性评估来评估结果。该项目将着重于通过裸露的模功率放大器的异质集成,包装的集成电路(例如,可编程阶段阵列的波束成形IC),用于DC偏置的集成被动器和高级热管理系统,通过异质整合(例如,用于可编程阶段阵列的波束成形IC),通过异质整合(例如,可进行可编程阶段阵列的波束成形IC)和高级热管理系统来实现高效功能和高性能MM波发射机单元。该研究将包括使用一种结合数值热和电磁模拟器的工具,包括热,3D插入器和电磁前端系统的共同设计,并提供强大的新规格到CAD。制造过程可能包括多个添加剂制造和/或薄膜微加工方法之一。对于包装综合的热管理系统,该项目将基于添加剂制造的基础能力,以调查一种新方法,旨在通过在研究类型的低音3D套件的现行状态下,通过在当前的艺术状态中通过多个数量级来提高可实现的MM波密度密度。为了实现这一目标,将利用正式的共同设计方法,以及对热,插入器和EM子系统的多余贝叶斯合作式化。此设计和优化过程将是一个有用的工具,可以推进具有异质集成要求的3D MM波软件包的字段。环境影响是PI的关键目标功能,将通过改善系统可靠性(较长的运营生命周期和减少过早的设备退休),材料选择,最小化能源消耗以及第二律效率分析来解决。拟议研究的潜在应用包括下一代无线通信和陆地和空间平台的传感(雷达),尤其是在恶劣环境中运行的平台。到-CAD工具的规格将有助于将包装和热管理原则扩展到广泛的应用程序中,而不是此处的关注。这项研究还将扩大可持续,低成本和可自定义的添加剂制造过程的实用性,以包括原型制作和高级MM-Wave系统的潜在低至中等规模的制造业。该奖项反映了NSF的法定任务,并通过使用该基金会的智力功能和广泛的影响来评估NSF的法定任务。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Markondeya Raj Pulugurtha其他文献

Markondeya Raj Pulugurtha的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Markondeya Raj Pulugurtha', 18)}}的其他基金

PFI-TT: Enhancing Manufacturing with Real-Time Defect Detection using mm-Wave Antenna Sensors
PFI-TT:使用毫米波天线传感器通过实时缺陷检测增强制造
  • 批准号:
    2234594
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
I-Corps: Power Single-Layer Integration with Component Embedding for Wearable and Internet of Things (IoT) Electronics
I-Corps:为可穿戴和物联网 (IoT) 电子产品提供具有组件嵌入的单层集成电源
  • 批准号:
    2131701
  • 财政年份:
    2021
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
EAGER: SARE: Multiferroic Shields for Smart Analog Security
EAGER:SARE:用于智能模拟安全的多铁屏蔽
  • 批准号:
    2029007
  • 财政年份:
    2020
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant

相似国自然基金

钛基骨植入物表面电沉积镁氢涂层及其促成骨性能研究
  • 批准号:
    52371195
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
CLMP介导Connexin45-β-catenin复合体对先天性短肠综合征的致病机制研究
  • 批准号:
    82370525
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
人工局域表面等离激元高灵敏传感及其系统小型化的关键技术研究
  • 批准号:
    62371132
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
优先流对中俄原油管道沿线多年冻土水热稳定性的影响机制研究
  • 批准号:
    42301138
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
用于稳定锌负极的界面层/电解液双向调控研究
  • 批准号:
    52302289
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328975
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328973
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328972
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328974
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: Indium selenides based back end of line neuromorphic accelerators
合作研究:FuSe:基于硒化铟的后端神经形态加速器
  • 批准号:
    2328741
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了