CAREER: Vision and Learning Augmented D-Band Networking and Imaging

职业:视觉和学习增强 D 波段网络和成像

基本信息

  • 批准号:
    2144505
  • 负责人:
  • 金额:
    $ 56万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-05-01 至 2027-04-30
  • 项目状态:
    未结题

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).Millimeter-wave (mmWave) is the core wireless technology to enable new applications in transportation, entertainment, education, and telemedicine. Specifically, the recent availability of inexpensive hardware above 100 GHz makes the time ripe for bringing D-band (110-170 GHz) mmWave networks to the masses. However, D-band mmWave networks bring new challenges in optimizing the deployment of picocells, coordination and adaptation of mobile links with unprecedentedly wide frequency options, and a disruption-free confluence of networking-imaging. This research project addresses these key challenges and improves the performance, reliability, and usability of mobile D-band networks. The project will design machine learning augmented scalable D-band systems and networks, and integrate them into applications, such as Augmented Reality (AR), drone delivery, and autonomous cars. The research outcomes will impact the broader population by: (1) bringing ubiquitous and high-quality bandwidth to underserved users; (2) enabling efficient use of spectrum to better utilize this nationally important resource; and (3) elevating the utility of networking devices by enabling several critical applications on them. The proposed research will be disseminated through publications, open-source software and datasets, and close collaboration with industry partners. It will be integrated into education by designing new undergraduate and graduate cross-disciplinary wireless curricula and involvement in broader community outreach activities.This project aims to enable the practical adoption of D-band mmWave networks and applications by solving the fundamental challenges in deployment, link adaptation, coordination, and unified networking-imaging. Specifically, the project explores an optical vision and deep learning augmented paradigm by thoroughly understanding the physical properties of the D-band channel, building measurement-driven empirical and learning models, and designing practical, real-time systems. Successful execution of this project would enable the following. (1) A framework for optimal deployment and a “what-if” analysis tool to help optimize the cost and benefits of D-band deployment in both indoor and outdoor environments. (2) Link adaptation and coordination protocols that significantly minimize latency and maximize throughput and efficiency for scalable D-band networking. (3) A unified networking-imaging protocol that reduces disruptions to the throughput and latency and overcomes challenges with the channel specularity to enable high-resolution D-band images. The project will design, build, and empirically validate the proposed systems in a D-band testbed, and the testbed will be extended into an educational platform that enhances the knowledge of wireless networking and sensing for students at different levels.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项的全部或部分资金均根据《2021 年美国救援计划法案》(公法 117-2)提供。毫米波 (mmWave) 是核心无线技术,可在交通、娱乐、教育和远程医疗领域实现新应用。具体来说,最近出现了 100 GHz 以上的廉价硬件,使得将 D 频段 (110-170 GHz) 毫米波网络推向大众的时机已经成熟。然而,D 频段毫米波网络在优化微微蜂窝部署、具有前所未有的广泛频率选项的移动链路的协调和适应以及网络成像的无中断融合方面带来了新的挑战。该研究项目解决了这些关键挑战,并提高了移动 D 频段网络的性能、可靠性和可用性。该项目将设计机器学习增强型可扩展 D 频段系统和网络,并将其集成到增强现实 (AR)、无人机送货和自动驾驶汽车等应用中。研究成果将通过以下方式影响更广泛的人群:(1) 为服务不足的用户带来无处不在的高质量带宽; (2) 实现频谱的有效利用,以更好地利用这一国家重要资源; (3) 通过在网络设备上启用多个关键应用程序来提高网络设备的实用性。拟议的研究将通过出版物、开源软件和数据集以及与行业合作伙伴的密切合作进行传播。它将通过设计新的本科生和研究生跨学科无线课程并参与更广泛的社区外展活动来融入教育。该项目旨在通过解决部署、链路自适应、协调和统一网络成像方面的基本挑战,实现 D 频段毫米波网络和应用的实际采用。具体来说,该项目通过彻底了解 D 波段通道的物理特性、构建测量驱动的经验和学习模型以及设计实用的实时系统,探索光学视觉和深度学习增强范例。该项目的成功执行将实现以下目标。 (1) 最佳部署框架和“假设”分析工具,有助于优化室内和室外环境中 D 频段部署的成本和收益。 (2) 链路自适应和协调协议,可显着最小化延迟并最大化可扩展 D 频段网络的吞吐量和效率。 (3) 统一的网络成像协议,可减少对吞吐量和延迟的干扰,并克服通道镜面反射的挑战,从而实现高分辨率 D 波段图像。该项目将在 D 频段测试台中设计、构建和实证验证所提出的系统,并且该测试台将扩展到一个教育平台,以增强不同级别学生的无线网络和传感知识。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
D3PicoNet: Deep Learning Networks for Robust Deployment of D-Band Millimeter-Wave Picocells
D3PicoNet:用于 D 频段毫米波微微蜂窝鲁棒部署的深度学习网络
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Regmi, H.;Sur, S.
  • 通讯作者:
    Sur, S.
Towards Deep Learning Augmented Robust D-Band Millimeter-Wave Picocell Deployment
迈向深度学习增强稳健 D 频段毫米波微微蜂窝部署
FlexVAA: A Flexible, Passive van Atta Retroreflector for Roadside Infrastructure Tagging and Identification
FlexVAA:用于路边基础设施标记和识别的灵活、无源 van Atta 后向反射器
  • DOI:
    10.1145/3560905.3568089
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Junker, Nicholas;Ge, Jinqun;Wang, Guoan;Sur, Sanjib
  • 通讯作者:
    Sur, Sanjib
SugarWave: A Non-destructive Estimation of Fruit Sugar Content Using Millimeter-Wave Sensing
SugarWave:利用毫米波传感无损估算水果糖含量
  • DOI:
    10.1109/mass58611.2023.00079
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tavasoli, Reza;Sur, Sanjib;Nelakuditi, Srihari
  • 通讯作者:
    Nelakuditi, Srihari
Exploring the Potential of Residual Networks for Efficient Sub-Nyquist Spectrum Sensing
探索残差网络实现高效亚奈奎斯特频谱传感的潜力
  • DOI:
    10.1109/wimob58348.2023.10187871
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Regmi, Hem;Sur, Sanjib
  • 通讯作者:
    Sur, Sanjib
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sanjib Sur其他文献

Handwritten Bangla character recognition in machine-printed forms using gradient information and Haar wavelet
使用梯度信息和 Haar 小波识别机器打印形式的手写孟加拉字符
Poster: Scoping Environment to Assist 60 GHz Link Deployment
海报:协助 60 GHz 链路部署的环境范围界定
Poster: MilliPose: Facilitating Full Body Silhouette Imaging from Millimeter-Wave Device
海报:MilliPose:促进毫米波设备的全身轮廓成像
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aakriti Adhikari;Sanjib Sur
  • 通讯作者:
    Sanjib Sur
Order of FIB Updates Seldom Matters: Fast Reroute and Fast Convergence with Interface-Specific Forwarding
FIB 更新的顺序并不重要:通过特定于接口的转发实现快速重新路由和快速收敛
  • DOI:
    10.1016/j.hcc.2022.100072
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Phani Krishna Penumarthi;Aaron Pecora;Sanjib Sur;J. O’Kane;Srihari Nelakuditi
  • 通讯作者:
    Srihari Nelakuditi

Sanjib Sur的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sanjib Sur', 18)}}的其他基金

NeTS: Small: NSF-DST: Modernizing Underground Mining Operations with Millimeter-Wave Imaging and Networking
NeTS:小型:NSF-DST:利用毫米波成像和网络实现地下采矿作业现代化
  • 批准号:
    2342833
  • 财政年份:
    2024
  • 资助金额:
    $ 56万
  • 项目类别:
    Standard Grant
CNS Core: Small: Software-Hardware Reconfigurable Systems for Mobile Millimeter-Wave Networks
CNS 核心:小型:移动毫米波网络的软硬件可重构系统
  • 批准号:
    1910853
  • 财政年份:
    2019
  • 资助金额:
    $ 56万
  • 项目类别:
    Standard Grant

相似国自然基金

老年人群视障风险VISION管控模式构建与实证研究
  • 批准号:
    71974198
  • 批准年份:
    2019
  • 资助金额:
    48.5 万元
  • 项目类别:
    面上项目

相似海外基金

Learning to create Intelligent Solutions with Machine Learning and Computer Vision: A Pathway to AI Careers for Diverse High School Students
学习利用机器学习和计算机视觉创建智能解决方案:多元化高中生的人工智能职业之路
  • 批准号:
    2342574
  • 财政年份:
    2024
  • 资助金额:
    $ 56万
  • 项目类别:
    Standard Grant
CAREER: Teachers Learning to be Technology Accessibility Allies to Blind and Low-Vision Students in Science
职业:教师学习成为盲人和低视力学生在科学领域的技术无障碍盟友
  • 批准号:
    2334693
  • 财政年份:
    2024
  • 资助金额:
    $ 56万
  • 项目类别:
    Continuing Grant
Evolving Telecoms scope 3 decarbonisation: an open-access emissions datasource powered by Vision Machine Learning
不断发展的电信范围 3 脱碳:由视觉机器学习提供支持的开放获取排放数据源
  • 批准号:
    10111834
  • 财政年份:
    2024
  • 资助金额:
    $ 56万
  • 项目类别:
    Collaborative R&D
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313151
  • 财政年份:
    2023
  • 资助金额:
    $ 56万
  • 项目类别:
    Continuing Grant
Collaborative Research: Evaluating the Impact of the Promoting Active Learning and Mentoring (PALM) Network on Vision
协作研究:评估促进主动学习和指导 (PALM) 网络对视觉的影响
  • 批准号:
    2223276
  • 财政年份:
    2023
  • 资助金额:
    $ 56万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313149
  • 财政年份:
    2023
  • 资助金额:
    $ 56万
  • 项目类别:
    Continuing Grant
Pig ID: developing a deep learning machine vision system to track pigs using individual biometrics
Pig ID:开发深度学习机器视觉系统,利用个体生物识别技术跟踪猪
  • 批准号:
    BB/X001385/1
  • 财政年份:
    2023
  • 资助金额:
    $ 56万
  • 项目类别:
    Research Grant
Pig ID: developing a deep learning machine vision system to track pigs using individual biometrics
Pig ID:开发深度学习机器视觉系统,利用个体生物识别技术跟踪猪
  • 批准号:
    BB/X001830/1
  • 财政年份:
    2023
  • 资助金额:
    $ 56万
  • 项目类别:
    Research Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313150
  • 财政年份:
    2023
  • 资助金额:
    $ 56万
  • 项目类别:
    Continuing Grant
Toward describing fine-grained details in computer vision through visual discrimination learning
通过视觉辨别学习来描述计算机视觉中的细粒度细节
  • 批准号:
    23K16945
  • 财政年份:
    2023
  • 资助金额:
    $ 56万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了