CAREER: Federated Learning: Statistical Optimality and Provable Security

职业:联邦学习:统计最优性和可证明的安全性

基本信息

  • 批准号:
    2144593
  • 负责人:
  • 金额:
    $ 63.28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2027-06-30
  • 项目状态:
    未结题

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).Rapid developments in machine learning and data science have compelled organizations and individuals to rely more and more on data to solve inference and decision problems. To ease the privacy concerns of data owners, researchers and practitioners have been advocating a new learning paradigm – federated learning. Under this framework, the central learner trains a model by communicating with distributed users and keeping the training data stored locally at the users. While opening up a world of new opportunities for training machine-learning models without compromising data privacy, federated learning faces significant challenges in maintaining statistical efficiency and security due to the heterogeneity and unreliability of the distributed users. Successful completion of the project provides key enabling technologies for efficient and secure federated learning and accelerates its adoption in security- and safety-critical systems such as self-driving cars and personalized medicine. The proposed education activities include teaching and mentoring graduate and undergraduate students targeted specifically at members of under-represented groups and community outreach aiming at raising public privacy and security awareness. This research develops an interdisciplinary program to investigate the fundamental and algorithmic aspects of federated learning ranging from statistical efficiency to security and privacy. The statistical efficiency of the widely-adopted algorithms is analyzed beyond their failures of reaching stationary points. New algorithms are developed based on meta-learning and clustering, and shown to be statistically optimal even in the presence of model and data heterogeneity. Moreover, this research conducts a comprehensive study of decentralized learning under Byzantine attacks. By borrowing insights from robust statistics, byzantine-resilient gradient descent algorithms with exponential convergence to the optimal error rates are devised. Finally, to protect the learner's privacy against eavesdropping attacks, the investigator aims to design optimal private learning strategies by innovating ideas from information theory and duality theory between the learner and adversary. Complementing the theoretical investigation, the new learning algorithms are made available as computational packages for the federated learning systems and real-data applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项全部或部分由2021年美国救援计划法案(公法117-2)资助。机器学习和数据科学的快速发展迫使组织和个人越来越多地依赖数据来解决推理和决策问题。为了缓解数据所有者对隐私的担忧,研究人员和实践者一直在倡导一种新的学习范式-联邦学习。在此框架下,中央学习器通过与分布式用户通信并将训练数据存储在用户本地来训练模型。虽然在不影响数据隐私的情况下为训练机器学习模型开辟了新的机会,但由于分布式用户的异构性和不可靠性,联邦学习在维护统计效率和安全性方面面临着重大挑战。该项目的成功完成为高效和安全的联邦学习提供了关键的支持技术,并加速了其在安全和安全关键系统中的应用,如自动驾驶汽车和个性化医疗。拟议的教育活动包括专门针对代表性不足的群体成员的研究生和本科生的教学和辅导,以及旨在提高公众隐私和安全意识的社区外联活动。这项研究开发了一个跨学科的计划,以研究联邦学习的基本和算法方面,从统计效率到安全性和隐私性。广泛采用的算法的统计效率进行了分析超出他们的失败达到稳定点。新的算法开发的基础上元学习和聚类,并被证明是统计上最优的,即使在模型和数据的异质性。此外,本研究还对拜占庭攻击下的分散学习进行了全面的研究。借用鲁棒统计的见解,拜占庭弹性梯度下降算法的指数收敛到最佳的错误率。最后,为了保护学习者的隐私免受窃听攻击,研究者的目的是设计最佳的私人学习策略,从信息论和学习者和对手之间的对偶理论的创新思想。作为对理论研究的补充,新的学习算法可作为联邦学习系统和真实数据应用程序的计算包提供。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Learner-Private Convex Optimization
  • DOI:
    10.1109/tit.2022.3203989
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Jiaming Xu;Kuang Xu;Dana Yang
  • 通讯作者:
    Jiaming Xu;Kuang Xu;Dana Yang
Global Convergence of Federated Learning for Mixed Regression
  • DOI:
    10.48550/arxiv.2206.07279
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lili Su;Jiaming Xu;Pengkun Yang
  • 通讯作者:
    Lili Su;Jiaming Xu;Pengkun Yang
Random Graph Matching at Otter’s Threshold via Counting Chandeliers
通过计数枝形吊灯在水獭阈值上进行随机图匹配
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jiaming Xu其他文献

Computational modelling of concrete structures subjected to high impulsive loading
  • DOI:
  • 发表时间:
    2016-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jiaming Xu
  • 通讯作者:
    Jiaming Xu
Doxorubicin Loading Capacity of Shell Cross-Linked Micelles with pH-Responsive Core as Anticancer Drug Delivery Nanocarriers
具有 pH 响应核心的壳交联胶束作为抗癌药物递送纳米载体的阿霉素负载能力
  • DOI:
    10.4028/www.scientific.net/msf.898.2366
  • 发表时间:
    2017-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shuyu Zhu;Zhongli Niu;Xiaoting Zhang;Danyue Wang;Jiaming Xu;Bin Sun;Meifang Zhu;Xiaoze Jiang
  • 通讯作者:
    Xiaoze Jiang
Experimental study on the effect of boundary condition for transmission properties of periodical metal hole arrays in terahertz range
太赫兹范围边界条件对周期性金属孔阵列传输特性影响的实验研究
  • DOI:
    10.1117/12.2032809
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jiaming Xu;Le Xie;C. Gao;Zhou Li;Lin Chen;Yiming Zhu
  • 通讯作者:
    Yiming Zhu
1 LFMD : detecting low-frequency mutations in genome sequencing data without 1 molecular tags 2 3
1 LFMD:在没有分子标签的情况下检测基因组测序数据中的低频突变 2 3
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rui Ye;Jie Ruan;X. Zhuang;Yanwei Qi;Yitai An;Jiaming Xu;Timothy Mak;Xinyu Liu;Xiuqing Zhang;H. Yang;Xun Xu;Larry;Baum;Chao Nie;P. Sham
  • 通讯作者:
    P. Sham
Loading and Controlled Releasing of Anti-cancer Drug Bortezomib by Glucose-Containing Diblock Copolymer
含葡萄糖二嵌段共聚物负载并控制释放抗癌药物硼替佐米
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaoting Zhang;Hailiang Dong;Z. Niu;Jiaming Xu;Danyue Wang;Han Tong;X. Jiang;Meifang Zhu
  • 通讯作者:
    Meifang Zhu

Jiaming Xu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jiaming Xu', 18)}}的其他基金

CIF: Medium: Collaborative Research: Learning in Networks: Performance Limits and Algorithms
CIF:媒介:协作研究:网络学习:性能限制和算法
  • 批准号:
    1856424
  • 财政年份:
    2019
  • 资助金额:
    $ 63.28万
  • 项目类别:
    Continuing Grant
BIGDATA: F: Collaborative Research: Mining for Patterns in Graphs and High-Dimensional Data: Achieving the Limits
大数据:F:协作研究:挖掘图形和高维数据中的模式:实现极限
  • 批准号:
    1838124
  • 财政年份:
    2018
  • 资助金额:
    $ 63.28万
  • 项目类别:
    Standard Grant
CRII: CIF: Learning Hidden Structures in Networks: Fundamental Limits and Efficient Algorithms
CRII:CIF:学习网络中的隐藏结构:基本限制和高效算法
  • 批准号:
    1755960
  • 财政年份:
    2018
  • 资助金额:
    $ 63.28万
  • 项目类别:
    Standard Grant
CRII: CIF: Learning Hidden Structures in Networks: Fundamental Limits and Efficient Algorithms
CRII:CIF:学习网络中的隐藏结构:基本限制和高效算法
  • 批准号:
    1850743
  • 财政年份:
    2018
  • 资助金额:
    $ 63.28万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Mining for Patterns in Graphs and High-Dimensional Data: Achieving the Limits
大数据:F:协作研究:挖掘图形和高维数据中的模式:实现极限
  • 批准号:
    1932630
  • 财政年份:
    2018
  • 资助金额:
    $ 63.28万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
  • 批准号:
    2414474
  • 财政年份:
    2024
  • 资助金额:
    $ 63.28万
  • 项目类别:
    Standard Grant
CICI: TCR: Transitioning Differentially Private Federated Learning to Enable Collaborative, Intelligent, Fair Skin Disease Diagnostics on Medical Imaging Cyberinfrastructure
CICI:TCR:转变差异化私有联合学习,以实现医学影像网络基础设施上的协作、智能、公平的皮肤病诊断
  • 批准号:
    2319742
  • 财政年份:
    2024
  • 资助金额:
    $ 63.28万
  • 项目类别:
    Standard Grant
Efficient Federated Learning for Deep Learning Through Structured Training
通过结构化训练实现深度学习的高效联邦学习
  • 批准号:
    24K20845
  • 财政年份:
    2024
  • 资助金额:
    $ 63.28万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Towards an Explainable, Efficient, and Reliable Federated Learning Framework: A Solution for Data Heterogeneity
迈向可解释、高效、可靠的联邦学习框架:数据异构性的解决方案
  • 批准号:
    24K20848
  • 财政年份:
    2024
  • 资助金额:
    $ 63.28万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CRII: CSR: Adaptive Federated Continuous Learning on Heterogeneous Edge Devices with Unlabeled Data
CRII:CSR:具有未标记数据的异构边缘设备的自适应联合连续学习
  • 批准号:
    2348279
  • 财政年份:
    2024
  • 资助金额:
    $ 63.28万
  • 项目类别:
    Standard Grant
CPS: Medium: Federated Learning for Predicting Electricity Consumption with Mixed Global/Local Models
CPS:中:使用混合全局/本地模型预测电力消耗的联合学习
  • 批准号:
    2317079
  • 财政年份:
    2024
  • 资助金额:
    $ 63.28万
  • 项目类别:
    Standard Grant
Federated Reinforcement Learning Empowered Point Cloud Video Streaming
联合强化学习赋能点云视频流
  • 批准号:
    24K14927
  • 财政年份:
    2024
  • 资助金额:
    $ 63.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CIF: Small: Efficient and Secure Federated Structure Learning from Bad Data
CIF:小型:高效、安全的联邦结构从不良数据中学习
  • 批准号:
    2341359
  • 财政年份:
    2024
  • 资助金额:
    $ 63.28万
  • 项目类别:
    Standard Grant
CAREER: Strengthening the Theoretical Foundations of Federated Learning: Utilizing Underlying Data Statistics in Mitigating Heterogeneity and Client Faults
职业:加强联邦学习的理论基础:利用底层数据统计来减轻异构性和客户端故障
  • 批准号:
    2340482
  • 财政年份:
    2024
  • 资助金额:
    $ 63.28万
  • 项目类别:
    Continuing Grant
Quantum Federated Learning-driven Secure Industry Cloud Collaboration Framework
量子联邦学习驱动的安全行业云协作框架
  • 批准号:
    24K20781
  • 财政年份:
    2024
  • 资助金额:
    $ 63.28万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了