CRII: CIF: Learning Hidden Structures in Networks: Fundamental Limits and Efficient Algorithms
CRII:CIF:学习网络中的隐藏结构:基本限制和高效算法
基本信息
- 批准号:1850743
- 负责人:
- 金额:$ 17.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2021-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The problem of learning hidden structures in network data arises in many contemporary applications such as recommender systems, network privacy, and genomics. This problem intersects high-dimensional statistical inference and large-scale network analysis. On the one hand, classical statistical paradigm focuses on optimal statistical performance of learning algorithms, while it neglects computational complexity that becomes increasingly critical as network data gets big. On the other hand, computer scientists mostly focus on computationally efficient approximation algorithms for worst-case instances, while they neglect the underlying statistical structures that can be potentially exploited to improve the algorithm performance. This research combines both statistical and computational perspectives to characterize fundamental performance limits and develop efficient optimal algorithms for learning hidden structures in networks. This research has two interrelated thrusts: graphon estimation and graph matching. Graphon estimation learns the underlying generating mechanism of a network from a single snapshot of the network. Graph matching matches the vertex sets of two graphs with correlated edges to minimize the number of adjacency disagreements. This research involves: (1) developing efficient algorithms for graphon estimation and graph matching by exploiting insights from spectral graph theory, convex relaxations, and statistical physics; (2) deriving sharp statistical performance limits by drawing tools from information theory, convex duality theory, and random matrix theory; (3) identifying fundamental computational barriers which limit computationally efficient procedures from attaining the optimal statistical performance. The investigator also deploys the algorithms developed in this research to real network data, leading to fast and accurate algorithms for preference elicitation in recommender systems, de-anonymization in social networks, and DNA assembly in genomics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
学习网络数据中的隐藏结构的问题出现在许多当代应用中,例如推荐系统、网络隐私和基因组学。这个问题与高维统计推断和大规模网络分析交叉。一方面,经典的统计范式关注学习算法的最佳统计性能,而忽略了随着网络数据变得越来越大而变得越来越重要的计算复杂性。另一方面,计算机科学家大多专注于最坏情况下的计算效率近似算法,而忽略了潜在的统计结构,可以利用它来提高算法的性能。这项研究结合了统计和计算的角度来描述基本的性能限制,并开发有效的最佳算法来学习网络中的隐藏结构。本研究有两个相互关联的方向:图子估计和图匹配。Graphon估计从网络的单个快照中学习网络的底层生成机制。图匹配是将两个具有相关边的图的顶点集进行匹配,以最小化邻接不一致的数量。这项研究涉及:(1)通过利用谱图理论、凸松弛和统计物理学的见解,开发用于图子估计和图匹配的有效算法;(2)通过从信息论、凸对偶理论和随机矩阵理论中绘制工具,导出尖锐的统计性能限制;(3)识别限制计算高效过程获得最佳统计性能的基本计算障碍。该研究人员还将本研究中开发的算法部署到真实的网络数据中,从而为推荐系统中的偏好诱导、社交网络中的去匿名化和基因组学中的DNA组装提供了快速准确的算法。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Power of D-hops in Matching Power-Law Graphs
- DOI:10.1145/3460094
- 发表时间:2021-02
- 期刊:
- 影响因子:0
- 作者:LIREN YU;Jiaming Xu;Xiaojun Lin
- 通讯作者:LIREN YU;Jiaming Xu;Xiaojun Lin
Learner-Private Convex Optimization
- DOI:10.1109/tit.2022.3203989
- 发表时间:2021-02
- 期刊:
- 影响因子:2.5
- 作者:Jiaming Xu;Kuang Xu;Dana Yang
- 通讯作者:Jiaming Xu;Kuang Xu;Dana Yang
Hidden Hamiltonian Cycle Recovery via Linear Programming
- DOI:10.1287/opre.2019.1886
- 发表时间:2018-04
- 期刊:
- 影响因子:0
- 作者:V. Bagaria;Jian Ding;David Tse;Yihong Wu;Jiaming Xu
- 通讯作者:V. Bagaria;Jian Ding;David Tse;Yihong Wu;Jiaming Xu
Securing Distributed Gradient Descent in High Dimensional Statistical Learning
- DOI:10.1145/3309697.3331499
- 发表时间:2018-04
- 期刊:
- 影响因子:0
- 作者:Lili Su;Jiaming Xu
- 通讯作者:Lili Su;Jiaming Xu
Rates of Convergence of Spectral Methods for Graphon Estimation
- DOI:
- 发表时间:2017-09
- 期刊:
- 影响因子:0
- 作者:Jiaming Xu
- 通讯作者:Jiaming Xu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jiaming Xu其他文献
Doxorubicin Loading Capacity of Shell Cross-Linked Micelles with pH-Responsive Core as Anticancer Drug Delivery Nanocarriers
具有 pH 响应核心的壳交联胶束作为抗癌药物递送纳米载体的阿霉素负载能力
- DOI:
10.4028/www.scientific.net/msf.898.2366 - 发表时间:
2017-06 - 期刊:
- 影响因子:0
- 作者:
Shuyu Zhu;Zhongli Niu;Xiaoting Zhang;Danyue Wang;Jiaming Xu;Bin Sun;Meifang Zhu;Xiaoze Jiang - 通讯作者:
Xiaoze Jiang
Computational modelling of concrete structures subjected to high impulsive loading
- DOI:
- 发表时间:
2016-06 - 期刊:
- 影响因子:0
- 作者:
Jiaming Xu - 通讯作者:
Jiaming Xu
1 LFMD : detecting low-frequency mutations in genome sequencing data without 1 molecular tags 2 3
1 LFMD:在没有分子标签的情况下检测基因组测序数据中的低频突变 2 3
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Rui Ye;Jie Ruan;X. Zhuang;Yanwei Qi;Yitai An;Jiaming Xu;Timothy Mak;Xinyu Liu;Xiuqing Zhang;H. Yang;Xun Xu;Larry;Baum;Chao Nie;P. Sham - 通讯作者:
P. Sham
Experimental study on the effect of boundary condition for transmission properties of periodical metal hole arrays in terahertz range
太赫兹范围边界条件对周期性金属孔阵列传输特性影响的实验研究
- DOI:
10.1117/12.2032809 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Jiaming Xu;Le Xie;C. Gao;Zhou Li;Lin Chen;Yiming Zhu - 通讯作者:
Yiming Zhu
Loading and Controlled Releasing of Anti-cancer Drug Bortezomib by Glucose-Containing Diblock Copolymer
含葡萄糖二嵌段共聚物负载并控制释放抗癌药物硼替佐米
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Xiaoting Zhang;Hailiang Dong;Z. Niu;Jiaming Xu;Danyue Wang;Han Tong;X. Jiang;Meifang Zhu - 通讯作者:
Meifang Zhu
Jiaming Xu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jiaming Xu', 18)}}的其他基金
CAREER: Federated Learning: Statistical Optimality and Provable Security
职业:联邦学习:统计最优性和可证明的安全性
- 批准号:
2144593 - 财政年份:2022
- 资助金额:
$ 17.44万 - 项目类别:
Continuing Grant
CIF: Medium: Collaborative Research: Learning in Networks: Performance Limits and Algorithms
CIF:媒介:协作研究:网络学习:性能限制和算法
- 批准号:
1856424 - 财政年份:2019
- 资助金额:
$ 17.44万 - 项目类别:
Continuing Grant
BIGDATA: F: Collaborative Research: Mining for Patterns in Graphs and High-Dimensional Data: Achieving the Limits
大数据:F:协作研究:挖掘图形和高维数据中的模式:实现极限
- 批准号:
1838124 - 财政年份:2018
- 资助金额:
$ 17.44万 - 项目类别:
Standard Grant
CRII: CIF: Learning Hidden Structures in Networks: Fundamental Limits and Efficient Algorithms
CRII:CIF:学习网络中的隐藏结构:基本限制和高效算法
- 批准号:
1755960 - 财政年份:2018
- 资助金额:
$ 17.44万 - 项目类别:
Standard Grant
BIGDATA: F: Collaborative Research: Mining for Patterns in Graphs and High-Dimensional Data: Achieving the Limits
大数据:F:协作研究:挖掘图形和高维数据中的模式:实现极限
- 批准号:
1932630 - 财政年份:2018
- 资助金额:
$ 17.44万 - 项目类别:
Standard Grant
相似国自然基金
Wolbachia的cif因子与天麻蚜蝇dsx基因协同调控生殖不育的机制研究
- 批准号:JCZRQN202501187
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
SHR和CIF协同调控植物根系凯氏带形成的机制
- 批准号:31900169
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CRII: CIF: Information Theoretic Measures for Fairness-aware Supervised Learning
CRII:CIF:公平意识监督学习的信息论措施
- 批准号:
2246058 - 财政年份:2023
- 资助金额:
$ 17.44万 - 项目类别:
Standard Grant
CRII: CIF: A Machine Learning-based Computational Framework for Large-Scale Stochastic Programming
CRII:CIF:基于机器学习的大规模随机规划计算框架
- 批准号:
2243355 - 财政年份:2022
- 资助金额:
$ 17.44万 - 项目类别:
Standard Grant
CRII: CIF: Automated and Robust Image Watermarking: A Deep Learning Approach
CRII:CIF:自动且鲁棒的图像水印:一种深度学习方法
- 批准号:
2104267 - 财政年份:2021
- 资助金额:
$ 17.44万 - 项目类别:
Standard Grant
CRII: CIF: Machine Learning Based Equalization Towards Multitrack Synchronization and Detection in Two-Dimensional Magnetic Recording
CRII:CIF:基于机器学习的均衡,实现二维磁记录中的多轨同步和检测
- 批准号:
2105092 - 财政年份:2021
- 资助金额:
$ 17.44万 - 项目类别:
Standard Grant
CRII: CIF: A Machine Learning-based Computational Framework for Large-Scale Stochastic Programming
CRII:CIF:基于机器学习的大规模随机规划计算框架
- 批准号:
1948159 - 财政年份:2020
- 资助金额:
$ 17.44万 - 项目类别:
Standard Grant
CRII: CIF: New Directions in Learning from Data with Faulty Correspondence
CRII:CIF:从错误对应的数据中学习的新方向
- 批准号:
1849876 - 财政年份:2019
- 资助金额:
$ 17.44万 - 项目类别:
Standard Grant
CRII: CIF: Learning Hidden Structures in Networks: Fundamental Limits and Efficient Algorithms
CRII:CIF:学习网络中的隐藏结构:基本限制和高效算法
- 批准号:
1755960 - 财政年份:2018
- 资助金额:
$ 17.44万 - 项目类别:
Standard Grant
CRII: CIF: Crowdsourcing-aware Learning
CRII:CIF:众包意识学习
- 批准号:
1755656 - 财政年份:2018
- 资助金额:
$ 17.44万 - 项目类别:
Standard Grant
CRII: CIF: Learning with Memory Constraints: Efficient Algorithms and Information Theoretic Lower Bounds
CRII:CIF:记忆约束学习:高效算法和信息论下界
- 批准号:
1657471 - 财政年份:2017
- 资助金额:
$ 17.44万 - 项目类别:
Standard Grant
CRII: CIF: Fast Algorithms for Learning Graphical Models from Scarce Data
CRII:CIF:从稀缺数据中学习图形模型的快速算法
- 批准号:
1565516 - 财政年份:2016
- 资助金额:
$ 17.44万 - 项目类别:
Standard Grant