CAREER: A Utility Aware Framework for Privately Sharing Individual Level Data

职业:用于私下共享个人级别数据的实用程序感知框架

基本信息

  • 批准号:
    2144684
  • 负责人:
  • 金额:
    $ 57.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2027-09-30
  • 项目状态:
    未结题

项目摘要

Individual level data can be collected and shared to benefit a wide range of research studies and exploratory applications. However, most privacy protecting data sharing solutions focus on well-defined aggregate analysis and do not take into account the application’s utility goals. Furthermore, current solutions may be limited in addressing the application-specific privacy needs, resulting in overly strong or inadequate privacy protection.This project develops novel privacy protecting data sharing solutions by incorporating an application’s privacy needs and utility goals in one optimization framework. The framework is compatible with a variety of rigorous privacy models. More importantly, it allows the application to customize the privacy mechanism’s structure as well as fine-grained output utility. The project shows the feasibility of customizing the framework to support real-world applications, e.g., in health and behavioral domains. Furthermore, to facilitate adoption in a wide range of domains, the project estimates the utility loss via statistical interactions in the data and develops computationally efficient techniques to solve large scale problems. Moreover, the project studies domain-specific privacy risks, e.g., in rapidly growing applications, to formulate the evolving privacy needs in the framework. The results of the project will benefit research studies and applications in a variety of domains that rely on individually contributed data, such as, behavioral and health studies. The project also integrates research and education with a number of interconnected activities, including curriculum development, student mentoring, interdisciplinary collaboration, and K-12 outreach.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
个人层面的数据可以收集和共享,以利于广泛的研究和探索性应用。然而,大多数隐私保护数据共享解决方案都集中在定义良好的聚合分析上,而没有考虑应用程序的实用目标。此外,目前的解决方案可能局限于解决特定应用程序的隐私需求,导致过于强大或不足的隐私保护。本项目通过将应用程序的隐私需求和实用程序的目标结合在一个优化框架中,开发新的隐私保护数据共享解决方案。该框架与各种严格的隐私模型兼容。更重要的是,它允许应用程序自定义隐私机制的结构以及细粒度的输出实用程序。该项目显示了定制框架以支持真实世界应用程序的可行性,例如,在健康和行为领域。 此外,为了便于在广泛的领域中采用,该项目通过数据中的统计交互来估计效用损失,并开发计算效率高的技术来解决大规模问题。此外,该项目还研究了特定领域的隐私风险,例如,在快速增长的应用程序中,在框架中制定不断变化的隐私需求。该项目的结果将有利于依赖个人贡献数据的各种领域的研究和应用,例如行为和健康研究。 该项目还将研究和教育与一些相互关联的活动相结合,包括课程开发,学生辅导,跨学科合作和K-12外展。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mitigating Membership Inference in Deep Survival Analyses with Differential Privacy
Enabling Health Data Sharing with Fine-Grained Privacy
Private Data Synthesis from Decentralized Non-IID Data
Co-location and air pollution exposure: case studies on the usefulness of location privacy
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Liyue Fan其他文献

A Demonstration of Image Obfuscation with Provable Privacy
具有可证明隐私的图像混淆演示
Differential Privacy for Image Publication
图像发布的差异隐私
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Liyue Fan
  • 通讯作者:
    Liyue Fan
Image Obfuscation with Quantifiable Privacy
具有可量化隐私的图像混淆
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Liyue Fan
  • 通讯作者:
    Liyue Fan
A Survey of Differentially Private Generative Adversarial Networks
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Liyue Fan
  • 通讯作者:
    Liyue Fan
Temporal Signature for Location Similarity

Liyue Fan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Liyue Fan', 18)}}的其他基金

Travel: SDM 2023 Student Travel Grant
旅行:SDM 2023 学生旅行补助金
  • 批准号:
    2325406
  • 财政年份:
    2023
  • 资助金额:
    $ 57.49万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Self-Learning and Self-Evolving Detection of Altered, Deceptive Images and Videos
协作研究:SaTC:核心:媒介:篡改、欺骗性图像和视频的自学习和自进化检测
  • 批准号:
    2027114
  • 财政年份:
    2020
  • 资助金额:
    $ 57.49万
  • 项目类别:
    Standard Grant
EAGER: SaTC: Early-Stage Interdisciplinary Collaboration: Privacy-Preserving Mobile Data Collection for Social and Behavioral Research
EAGER:SaTC:早期跨学科合作:用于社会和行为研究的隐私保护移动数据收集
  • 批准号:
    1915828
  • 财政年份:
    2019
  • 资助金额:
    $ 57.49万
  • 项目类别:
    Standard Grant
CRII: SaTC: Image Publication with Differential Privacy
CRII:SaTC:具有差异隐私的图像发布
  • 批准号:
    1949217
  • 财政年份:
    2019
  • 资助金额:
    $ 57.49万
  • 项目类别:
    Standard Grant
EAGER: SaTC: Early-Stage Interdisciplinary Collaboration: Privacy-Preserving Mobile Data Collection for Social and Behavioral Research
EAGER:SaTC:早期跨学科合作:用于社会和行为研究的隐私保护移动数据收集
  • 批准号:
    1951430
  • 财政年份:
    2019
  • 资助金额:
    $ 57.49万
  • 项目类别:
    Standard Grant
CRII: SaTC: Image Publication with Differential Privacy
CRII:SaTC:具有差异隐私的图像发布
  • 批准号:
    1755884
  • 财政年份:
    2018
  • 资助金额:
    $ 57.49万
  • 项目类别:
    Standard Grant

相似海外基金

Optimal utility-based design of oncology clinical development programmes
基于效用的肿瘤学临床开发项目的优化设计
  • 批准号:
    2734768
  • 财政年份:
    2026
  • 资助金额:
    $ 57.49万
  • 项目类别:
    Studentship
Evolving privacy and utility in data storage and publishing
数据存储和发布中不断发展的隐私和实用性
  • 批准号:
    DE240100165
  • 财政年份:
    2024
  • 资助金额:
    $ 57.49万
  • 项目类别:
    Discovery Early Career Researcher Award
Determining the clinical utility of BioEP: a multisite, prospective, study
确定 BioEP 的临床效用:一项多中心前瞻性研究
  • 批准号:
    10090508
  • 财政年份:
    2024
  • 资助金额:
    $ 57.49万
  • 项目类别:
    Investment Accelerator
Quantum-Enabled Brain Imaging: A Pathway to Clinical Utility
量子脑成像:临床应用的途径
  • 批准号:
    10107115
  • 财政年份:
    2024
  • 资助金额:
    $ 57.49万
  • 项目类别:
    Small Business Research Initiative
Probabilistic Inference Based Utility Evaluation and Path Generation for Active Autonomous Exploration of USVs in Unknown Confined Marine Environments
基于概率推理的效用评估和路径生成,用于未知受限海洋环境中 USV 主动自主探索
  • 批准号:
    EP/Y000862/1
  • 财政年份:
    2024
  • 资助金额:
    $ 57.49万
  • 项目类别:
    Research Grant
CAREER: Theory and Practice of Privacy-Utility Tradeoffs in Enterprise Data Sharing
职业:企业数据共享中隐私与效用权衡的理论与实践
  • 批准号:
    2338772
  • 财政年份:
    2024
  • 资助金额:
    $ 57.49万
  • 项目类别:
    Continuing Grant
The Open Data Exchange Ecosystem in Proteomics: Evolving its Utility
蛋白质组学中的开放数据交换生态系统:不断发展其实用性
  • 批准号:
    EP/Y035984/1
  • 财政年份:
    2024
  • 资助金额:
    $ 57.49万
  • 项目类别:
    Research Grant
Extending the utility and durability of antifungal agents via innovative treatment regimens that minimise drug resistance
通过创新治疗方案最大限度地减少耐药性,延长抗真菌药物的效用和持久性
  • 批准号:
    MR/Y002164/1
  • 财政年份:
    2024
  • 资助金额:
    $ 57.49万
  • 项目类别:
    Research Grant
Examining the impact of remand and the utility of bail risk assessments
检查还押的影响和保释风险评估的效用
  • 批准号:
    DP240103207
  • 财政年份:
    2024
  • 资助金额:
    $ 57.49万
  • 项目类别:
    Discovery Projects
The Diagnostic and Prognostic Utility of Eye Tracking in Parkinson's Disease and Related Disorders
眼动追踪在帕金森病及相关疾病中的诊断和预后效用
  • 批准号:
    479285
  • 财政年份:
    2023
  • 资助金额:
    $ 57.49万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了