CAREER: Rethink and Redesign of Analytics Databases for Machine Learning Model Serving
职业:重新思考和重新设计用于机器学习模型服务的分析数据库
基本信息
- 批准号:2144923
- 负责人:
- 金额:$ 54.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
It is urgent to apply artificial intelligence to interactive applications, such as supply-chain prediction, credit card fraud detection, customer service chatbot, emergency response, and healthcare consulting. Databases manage a significant portion of data for these applications. However, due to the lack of support for deep neural network inference in existing databases, artificial intelligence is usually provided by a separate process for machine learning. As a result, data transfer between decoupled systems significantly increases the latency, making it challenging to meet the time constraints of interactive applications. Such decoupling also complicates application development and system management. This research will enable native deep neural network model inferences from databases to eliminate cross-system overheads. It will provide a unified representation to bridge the gap between data queries and deep neural network models. Ultimately, the project will deliver a novel database system to facilitate interactive intelligent applications. The research will support a Big Data Magic Week activity for K-12 underrepresented students and refugee youths in Arizona. It will be used as a platform to prepare selected undergraduate students in Arizona State University for international research competitions. It will also be integrated with a graduate-level course on data-intensive systems for machine learning at Arizona State University.The research objective is to rethink and redesign analytics databases to unify data queries and machine learning model inferences, particularly deep neural network model inferences. The investigator divides the aim into three synergistic research thrusts. First, the research will develop methods to bridge the machine learning inference and the relational algebra processing through a unified two-level intermediate representation. It will support the progressive lowering of all-scale machine learning models into relational algebra expressions and flexible yet analyzable functions. Moreover, it facilitates multi-objective co-optimization of data queries and model inferences for optimal latency, accuracy, and resource utilization trade-offs. Second, the project will further provide ahead-of-time code generation to reduce the latency of model inferences. The generated code will allow runtime physical optimizations such as materialization of intermediate data and batch size tuning, which are adaptive to dynamic query frequencies. Third, the research will provide accuracy-aware storage optimizations by indexing and clustering tensor blocks based on their magnitudes, similarity, and other model-specific properties. This research will establish new connections between query processing and model inferences. If successful, the project will dramatically reduce end-to-end latency for a broad class of time-critical data-intensive artificial intelligence applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
将人工智能应用于供应链预测、信用卡欺诈检测、客户服务聊天机器人、应急响应和医疗保健咨询等交互式应用迫在眉睫。数据库为这些应用程序管理很大一部分数据。然而,由于现有数据库缺乏对深度神经网络推理的支持,人工智能通常由机器学习的单独过程提供。因此,解耦系统之间的数据传输显著增加了延迟,使其难以满足交互式应用程序的时间限制。这种解耦也使应用程序开发和系统管理变得复杂。该研究将使本地深度神经网络模型从数据库推断,以消除跨系统开销。它将提供一个统一的表示,以弥合数据查询和深度神经网络模型之间的差距。最终,该项目将提供一个新的数据库系统,以促进交互式智能应用。这项研究将支持为亚利桑那州K-12学生和难民青年提供的大数据魔法周活动。它将被用作一个平台,为亚利桑那州立大学选定的本科生准备国际研究竞赛。它还将与亚利桑那州立大学(Arizona State University)的一门关于机器学习数据密集型系统的研究生课程相结合。研究目标是重新思考和重新设计分析数据库,以统一数据查询和机器学习模型推理,特别是深度神经网络模型推理。研究者将目标分为三个协同的研究重点。首先,研究将开发通过统一的两级中间表示来连接机器学习推理和关系代数处理的方法。它将支持将所有规模的机器学习模型逐步降低为关系代数表达式和灵活但可分析的函数。此外,它促进了数据查询和模型推断的多目标协同优化,以实现最佳延迟、准确性和资源利用权衡。其次,该项目将进一步提供提前的代码生成,以减少模型推断的延迟。生成的代码将允许运行时物理优化,例如中间数据的物化和批大小调优,这些都可以适应动态查询频率。第三,该研究将根据张量块的大小、相似性和其他特定于模型的属性对其进行索引和聚类,从而提供具有准确性意识的存储优化。本研究将在查询处理和模型推理之间建立新的联系。如果成功,该项目将大大减少大量时间关键型数据密集型人工智能应用的端到端延迟。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Serving Deep Learning Models with Deduplication from Relational Databases
- DOI:10.14778/3547305.3547325
- 发表时间:2022-01
- 期刊:
- 影响因子:0
- 作者:Lixi Zhou;Jiaqing Chen;Amitabh Das;Hong Min;Lei Yu;Ming Zhao;Jia Zou
- 通讯作者:Lixi Zhou;Jiaqing Chen;Amitabh Das;Hong Min;Lei Yu;Ming Zhao;Jia Zou
Benchmark of DNN Model Search at Deployment Time
- DOI:10.1145/3538712.3538725
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Lixi Zhou;Arindam Jain;Zijie Wang;Amitabh Das;Yingzhen Yang;Jia Zou
- 通讯作者:Lixi Zhou;Arindam Jain;Zijie Wang;Amitabh Das;Yingzhen Yang;Jia Zou
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jia Zou其他文献
Exploring the therapeutic effects and molecular mechanisms of total flavonoids of emAbelmoschus manihot/em (L.) Medic in the treatment of IgA nephropathy based on WGCNA
基于加权基因共表达网络分析探讨黄蜀葵总黄酮治疗 IgA 肾病的疗效及分子机制
- DOI:
10.1016/j.jep.2025.120191 - 发表时间:
2025-08-29 - 期刊:
- 影响因子:5.400
- 作者:
Changqing Wen;Hang Su;Jiaxuan Li;Jia Zou;Mingxu Gong;Fujiang Wang;Haitao Ge - 通讯作者:
Haitao Ge
PtidyOS: A Lightweight Microkernel for Ptides Real-Time Systems
PtidyOS:用于 Ptides 实时系统的轻量级微内核
- DOI:
10.1109/rtas.2012.28 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Jia Zou;Slobodan Matic;Edward A. Lee - 通讯作者:
Edward A. Lee
Annealing-engineered lentinan-tannic acid hydrogel with enhanced adhesion and antibacterial activity for infected wound healing
具有增强黏附性和抗菌活性的退火工程化香菇多糖 - 单宁酸水凝胶用于感染伤口愈合
- DOI:
10.1016/j.ijbiomac.2025.144078 - 发表时间:
2025-06-01 - 期刊:
- 影响因子:8.500
- 作者:
Guanxing Tang;Tao Zeng;Hengpeng Wu;Xichen Qiao;Jia Zou;Jinhao Pan;Bin Li;Yuxi Xie;Ziyun Yang;Qiang Song;Yong Gao;Yu Han;Yao Wu;Xiaoguo Jiao;Jiangwei Xiao;Zongbao Zhou - 通讯作者:
Zongbao Zhou
FGeo-TP: A Language Model-Enhanced Solver for Euclidean Geometry Problems
FGeo-TP:欧几里得几何问题的语言模型增强求解器
- DOI:
10.3390/sym16040421 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Yiming He;Jia Zou;Xiaokai Zhang;Na Zhu;Tuo Leng - 通讯作者:
Tuo Leng
Encapsulation of hyperoside with acyclic cucurbiturils: Supramolecular binding behavior, water solubility and emin vitro/em antioxidant activity
金丝桃苷与无环葫芦脲的包合作用:超分子结合行为、水溶性和体外抗氧化活性
- DOI:
10.1016/j.molstruc.2023.136342 - 发表时间:
2023-12-15 - 期刊:
- 影响因子:4.700
- 作者:
Jiaxing Chen;Zhaosong Sui;Tianzhu Yin;Jia Zou;Bo Yang;Xiali Liao - 通讯作者:
Xiali Liao
Jia Zou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Reduce, Reuse, Rethink PACKaging: towards novel fiber-based packaging and reuse schemes uptake
减少、重复使用、重新思考包装:采用新型纤维包装和重复利用方案
- 批准号:
10044758 - 财政年份:2022
- 资助金额:
$ 54.76万 - 项目类别:
EU-Funded
Rethink Ride-Hail: From Understanding Limits to Reaching Full Potential
重新思考网约车:从了解限制到充分发挥潜力
- 批准号:
1922665 - 财政年份:2019
- 资助金额:
$ 54.76万 - 项目类别:
Standard Grant
Rethink the teaching method of "bending elbows and swinging arms back and forth" in sprint running
短跑跑“屈肘摆臂”教学方法的再思考
- 批准号:
17K13130 - 财政年份:2017
- 资助金额:
$ 54.76万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
ReThink HF: A novel multi-parameter sensor for heart failure remote monitoring
ReThink HF:一种用于心力衰竭远程监测的新型多参数传感器
- 批准号:
8782282 - 财政年份:2014
- 资助金额:
$ 54.76万 - 项目类别:
Using Autonomy Orientated Computing to Rethink Computer Game Production
使用面向自主的计算重新思考计算机游戏制作
- 批准号:
130595 - 财政年份:2011
- 资助金额:
$ 54.76万 - 项目类别:
Feasibility Studies
How's My Feedback? A Collaborative Project to Evaluate and Rethink Internet-based Rating and Ranking Schemes
我的反馈如何?
- 批准号:
ES/H043500/1 - 财政年份:2010
- 资助金额:
$ 54.76万 - 项目类别:
Research Grant