CAREER: Phase Control in Synthetic Two-Dimensional Materials
职业:合成二维材料的相控制
基本信息
- 批准号:2145022
- 负责人:
- 金额:$ 59.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-01 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This Faculty Early Career Development (CAREER) grant supports the research into new electronic materials which can operate in new modalities potentially circumventing the bottleneck of speed and energy consumption in logic and memory devices used in computing. Next generation computing and communications are essential for the continued economic prosperity of the United States. Metalorganic chemical vapor deposition is a scalable manufacturing process for the precision synthesis of thin films for microelectronics. While widely used for optical and electronic devices, this manufacturing process is not well-developed for the synthesis of two-dimensional transition metal dichalcogenides. This research will develop the knowledge needed to provide control over the detailed atomic arrangement of the atoms in these two-dimensional materials on an industrial scale, required for the incorporation of these materials into advanced electronic systems. These materials exhibit two dominant atomic arrangements which are referred to as the polytype or phase. The specific phase dictates the physical properties of the material and potentially could be selected for use in the formation of components necessary to address the voltage, interconnect, and dimensional scaling issues in current and future microelectronics. This award supports innovation in manufacturing through basic research and technology development of metalorganic chemical vapor deposition that will lead to precision in the selection of the desired material phase during synthesis. Achieving phase-sensitive process control will pave the way to realize new high speed and low energy consuming microelectronic devices. This research program provides educational activities aimed at developing the next generation of material processing graduates and the future leaders in microelectronic materials in the United States. Outreach activities to increase the diversification of the workforce in advanced materials manufacturing will be pursued by improving the transfer pathway of students from community colleges to 4-year university Materials Science and Engineering programs.This research program investigates an advanced manufacturing approach to achieve phase selectivity and control during the epitaxial growth of two-dimensional transition metal dichalcogenide materials by metalorganic chemical vapor deposition. This research program will specifically study the non-equilibrium growth of these materials using steady-state light illumination: (i) to manipulate the population of free carriers during synthesis and thus the formation energy of point defects; (ii) to influence the surface kinetics of mobile species and thus the phase equilibria of these materials; and (iii) to change the chemical trajectory as well as reaction pathways that will ultimately impact which polymorph phase is stabilized during growth. The research program will provide a detailed understanding of the underlying mechanisms that govern the phase selectivity during epitaxial growth. These two-dimensional materials could be used in reconfigurable, electrically tunable, low energy and low voltage switching devices based on phase transformation between the different polytypes. This research program will develop real-time, in situ optical diagnostics of the materials synthesis process to characterize and track the evolution of individual phases during synthesis. The information from the initial materials system can be used to understand the complex chemical processes present throughout the synthesis of other two-dimensional materials under non-equilibrium conditions. A particular phase of interest could be selectively produced for integration into a variety of microelectronic logic and memory designs. This research program will advance the critical understanding of the thermodynamic and kinetic energy barriers for phase transformation in two-dimensional transition metal dichalcogenide materials and provide insights into the engineering of these energy barriers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该学院早期职业发展(CAREER)资助支持研究新的电子材料,这些材料可以在新的模式下运行,从而可能绕过计算中使用的逻辑和存储设备的速度和能耗瓶颈。下一代计算和通信对于美国的持续经济繁荣至关重要。金属有机化学气相沉积是一种可扩展的制造工艺,用于精密合成微电子薄膜。虽然广泛用于光学和电子器件,但这种制造方法对于二维过渡金属二硫属化物的合成还没有得到很好的开发。这项研究将开发所需的知识,以提供控制这些二维材料中原子的详细原子排列的工业规模,需要将这些材料纳入先进的电子系统。这些材料表现出两种主要的原子排列,称为多型体或相。特定的相决定了材料的物理特性,并且可能被选择用于形成解决当前和未来微电子中的电压、互连和尺寸缩放问题所必需的组件。该奖项支持通过金属有机化学气相沉积的基础研究和技术开发进行制造创新,从而在合成过程中精确选择所需的材料相。实现相敏过程控制将为实现新型高速低能耗微电子器件铺平道路。该研究计划提供旨在培养下一代材料加工毕业生和美国微电子材料未来领导者的教育活动。通过改善学生从社区学院到四年制大学材料科学与工程专业的转学途径,将开展扩大先进材料制造业劳动力多样化的外联活动。本研究项目研究了一种先进制造方法,以实现两种材料外延生长过程中的相选择性和控制。通过金属有机化学气相沉积制备三维过渡金属二硫属化物材料。这项研究计划将专门研究这些材料的非平衡生长使用稳态光照明:(一)在合成过程中操纵自由载流子的人口,从而形成点缺陷的能量;(二)影响表面动力学的移动的物种,从而这些材料的相平衡;和(iii)改变化学轨迹以及反应途径,其将最终影响在生长期间稳定哪个多晶型物相。该研究计划将提供一个详细的了解,在外延生长过程中的相选择性的基本机制。这些二维材料可以用于可重构的,电调谐的,低能量和低电压的开关器件之间的相变不同的多型体的基础上。该研究计划将开发材料合成过程的实时原位光学诊断,以表征和跟踪合成过程中各个阶段的演变。来自初始材料系统的信息可用于理解在非平衡条件下合成其他二维材料的整个过程中存在的复杂化学过程。可以选择性地产生感兴趣的特定相,用于集成到各种微电子逻辑和存储器设计中。该研究计划将促进对二维过渡金属二硫属化物材料相变的热力学和动能障碍的批判性理解,并为这些能量障碍的工程提供见解。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zakaria Al Balushi其他文献
Zakaria Al Balushi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Baryogenesis, Dark Matter and Nanohertz Gravitational Waves from a Dark
Supercooled Phase Transition
- 批准号:24ZR1429700
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
ATLAS实验探测器Phase 2升级
- 批准号:11961141014
- 批准年份:2019
- 资助金额:3350 万元
- 项目类别:国际(地区)合作与交流项目
地幔含水相Phase E的温度压力稳定区域与晶体结构研究
- 批准号:41802035
- 批准年份:2018
- 资助金额:12.0 万元
- 项目类别:青年科学基金项目
基于数字增强干涉的Phase-OTDR高灵敏度定量测量技术研究
- 批准号:61675216
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
基于Phase-type分布的多状态系统可靠性模型研究
- 批准号:71501183
- 批准年份:2015
- 资助金额:17.4 万元
- 项目类别:青年科学基金项目
纳米(I-Phase+α-Mg)准共晶的临界半固态形成条件及生长机制
- 批准号:51201142
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
连续Phase-Type分布数据拟合方法及其应用研究
- 批准号:11101428
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
D-Phase准晶体的电子行为各向异性的研究
- 批准号:19374069
- 批准年份:1993
- 资助金额:6.4 万元
- 项目类别:面上项目
相似海外基金
STTR Phase I: A Reliable and Efficient New Method for Satellite Attitude Control
STTR第一阶段:可靠、高效的卫星姿态控制新方法
- 批准号:
2310323 - 财政年份:2024
- 资助金额:
$ 59.78万 - 项目类别:
Standard Grant
STTR Phase I: Weed Control Via Terradynamically Robust Robots
STTR 第一阶段:通过地形动力学鲁棒机器人控制杂草
- 批准号:
2335553 - 财政年份:2024
- 资助金额:
$ 59.78万 - 项目类别:
Standard Grant
SBIR Phase I: CAS: Advanced Thermal Oxidizer to Cost-effectively Control Greenhouse Emissions from Small Sources
SBIR 第一阶段:CAS:先进的热氧化器,可经济高效地控制小源温室气体排放
- 批准号:
2326861 - 财政年份:2024
- 资助金额:
$ 59.78万 - 项目类别:
Standard Grant
Collaborative Research: US-Ireland R&D Partnership: Processing-Driven Nucleation Mediated Control for Manufacturing of Phase-Pure Ferroelectric Hafnia
合作研究:美国-爱尔兰 R
- 批准号:
2346484 - 财政年份:2023
- 资助金额:
$ 59.78万 - 项目类别:
Standard Grant
SBIR Phase I: Automatic, Digital Classification and Counting of Mosquitos to Allow More Effective Vector Control
SBIR 第一阶段:对蚊子进行自动数字分类和计数,以实现更有效的病媒控制
- 批准号:
2233676 - 财政年份:2023
- 资助金额:
$ 59.78万 - 项目类别:
Standard Grant
Development of Fabrication Process for Hard Ceramic Coatings in Liquid Phase Based on Chemical Equilibrium Theory and Their Structural Control
基于化学平衡理论的液相硬质陶瓷涂层制备工艺及其结构控制研究
- 批准号:
23K04433 - 财政年份:2023
- 资助金额:
$ 59.78万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Establishment of Partial Liquid Metal Dealloying for New Nanoporous Alloy Synthesis by Thermodynamic Control of Solid-Liquid Phase Equilibrium
固液相平衡热力学控制部分液态金属脱合金合成新型纳米多孔合金的建立
- 批准号:
23H01705 - 财政年份:2023
- 资助金额:
$ 59.78万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Precise structure control and applications of polymer monoliths using phase separation
利用相分离的聚合物整体的精确结构控制和应用
- 批准号:
23H02024 - 财政年份:2023
- 资助金额:
$ 59.78万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
A new platform to understand and control protein liquid-liquid phase separation
理解和控制蛋白质液-液相分离的新平台
- 批准号:
2886460 - 财政年份:2023
- 资助金额:
$ 59.78万 - 项目类别:
Studentship
Collaborative Research: US-Ireland R&D Partnership: Processing-Driven Nucleation Mediated Control for Manufacturing of Phase-Pure Ferroelectric Hafnia
合作研究:美国-爱尔兰 R
- 批准号:
2149480 - 财政年份:2023
- 资助金额:
$ 59.78万 - 项目类别:
Standard Grant














{{item.name}}会员




