CAREER: Information Extraction and Integration with Applications to Healthcare Question Answering
职业:信息提取和与医疗保健问答应用程序的集成
基本信息
- 批准号:2145202
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-01 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).Getting a comprehensive answer to a medical question from Web search engines can be time-consuming because health information, as is common on the Web, is scattered across many websites. One difficulty is the prevalent vocabulary mismatch between different sources due to synonymous words, morphological variations, abbreviations, and different word orderings. Another challenge is that, for those who are not medical experts, health information can be complex and difficult to comprehend. Supportive visual representations can be helpful to various people, for example, those reading text not in their first language, older adults, or more generally, non-experts. To address these challenges, this project brings together health information in a single unified place by assimilating, synthesizing, and storing health information in a broad-coverage resource with a shared vocabulary. Such a resource serves the purpose of facilitating fast access to comprehensive answers to health questions to save people time who otherwise might need to spend a substantial amount of time reading different sources to connect the dots and get a complete answer to their information need. To help people understand complex health information, the project will generate summaries that combine text and supportive visualizations.This project will develop novel techniques for integrating information from disparate sources. This entails identifying relevant content and reconciling the mismatch in the vocabularies of different sources. To enforce a shared vocabulary across sources, the project will develop novel techniques for entity linking, that are not limited to recognizing entities seen at training time, as new diseases, treatments, other types of medical entities can emerge. For broad coverage, the project will consider content written by clinicians, researchers, and consumers. The project will convert this information into a graph structure that can be used to learn representations that further enhance coverage of the resource while maintaining high precision. The project will also develop novel techniques for multimodal summaries of healthcare answers to facilitate understanding of complex concepts.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项的全部或部分资金来源于《2021 年美国救援计划法案》(公法 117-2)。从网络搜索引擎获取医疗问题的全面答案可能非常耗时,因为健康信息(如网络上常见的那样)分散在许多网站上。困难之一是由于同义词、形态变化、缩写和不同的词序而导致不同来源之间普遍存在的词汇不匹配。另一个挑战是,对于非医学专家来说,健康信息可能很复杂且难以理解。支持性视觉表示对各种人都有帮助,例如,那些阅读非母语文本的人、老年人,或者更一般地说,非专家。为了应对这些挑战,该项目通过同化、合成和存储具有共享词汇的广泛覆盖资源中的健康信息,将健康信息汇集在一个统一的位置。此类资源的目的是促进快速获得健康问题的全面答案,以节省人们的时间,否则他们可能需要花费大量时间阅读不同的来源来连接各个点并获得其信息需求的完整答案。为了帮助人们理解复杂的健康信息,该项目将生成结合文本和支持性可视化的摘要。该项目将开发整合不同来源信息的新技术。这需要识别相关内容并协调不同来源词汇的不匹配。为了强制跨来源共享词汇表,该项目将开发用于实体链接的新技术,这些技术不仅限于识别训练时看到的实体,因为新的疾病、治疗方法和其他类型的医疗实体可能会出现。为了扩大覆盖范围,该项目将考虑临床医生、研究人员和消费者撰写的内容。该项目将把这些信息转换成图形结构,可用于学习表示,进一步增强资源的覆盖范围,同时保持高精度。该项目还将开发医疗保健答案多模式摘要的新技术,以促进对复杂概念的理解。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
SYMPTOMIFY: Transforming Symptom Annotations with Language Model Knowledge Harvesting
SYMPTOMIFY:通过语言模型知识采集转换症状注释
- DOI:10.18653/v1/2023.findings-emnlp.781
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Kim, Bosung;Nakashole, Ndapa
- 通讯作者:Nakashole, Ndapa
Data Augmentation for Rare Symptoms in Vaccine Side-Effect Detection
- DOI:10.18653/v1/2022.bionlp-1.29
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Bosung Kim;Ndapandula Nakashole
- 通讯作者:Bosung Kim;Ndapandula Nakashole
Medical Question Understanding and Answering with Knowledge Grounding and Semantic Self-Supervision
- DOI:10.48550/arxiv.2209.15301
- 发表时间:2022-09
- 期刊:
- 影响因子:0
- 作者:Khalil Mrini;Harpreet Singh;Franck Dernoncourt;Seunghyun Yoon;Trung Bui;Walter Chang;E. Farcas;Ndapandula Nakashole
- 通讯作者:Khalil Mrini;Harpreet Singh;Franck Dernoncourt;Seunghyun Yoon;Trung Bui;Walter Chang;E. Farcas;Ndapandula Nakashole
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ndapandula Nakashole其他文献
URDF: Efficient Reasoning in Uncertain RDF Knowledge Bases with Soft and Hard Rules
URDF:具有软硬规则的不确定 RDF 知识库中的高效推理
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
M. Theobald;Mauro Sozio;Fabian M. Suchanek;Ndapandula Nakashole - 通讯作者:
Ndapandula Nakashole
Interactive Plot Manipulation using Natural Language
使用自然语言进行交互式绘图操作
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Yihan Wang;Yutong Shao;Ndapandula Nakashole - 通讯作者:
Ndapandula Nakashole
Extracting the Unknown from Long Math Problems
- DOI:
- 发表时间:
2021-03 - 期刊:
- 影响因子:0
- 作者:
Ndapandula Nakashole - 通讯作者:
Ndapandula Nakashole
Commonsense about Human Senses: Labeled Data Collection Processes
- DOI:
10.18653/v1/d19-6005 - 发表时间:
2019-11 - 期刊:
- 影响因子:0
- 作者:
Ndapandula Nakashole - 通讯作者:
Ndapandula Nakashole
A Gradually Soft Multi-Task and Data-Augmented Approach to Medical Question Understanding
一种逐渐软化的多任务和数据增强的医学问题理解方法
- DOI:
10.18653/v1/2021.acl-long.119 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
K. Mrini;Franck Dernoncourt;Seunghyun Yoon;Trung H. Bui;Walter Chang;E. Farcas;Ndapandula Nakashole - 通讯作者:
Ndapandula Nakashole
Ndapandula Nakashole的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
- 批准号:W2433169
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
SIEPH: Safe Information Extraction from Patient Histories
SIEPH:从患者病史中安全提取信息
- 批准号:
EP/X018237/1 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Research Grant
CAREER: Achieving Quality Information Extraction from Scientific Documents with Heterogeneous Weak Supervisions
职业:通过异构弱监督实现科学文档中的质量信息提取
- 批准号:
2237831 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Speaking Webspeak: Maximising Information Extraction From Online Language Use, for Better Interpretation and Responses in Creative Systems
说网络语言:最大限度地从在线语言使用中提取信息,以更好地解释和响应创意系统
- 批准号:
2872640 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Studentship
Information extraction accumulating graph-formed knowledge with deep learning
通过深度学习积累图形化知识的信息提取
- 批准号:
22KJ2983 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Automatic extraction of chemical reaction process information from papers and its utilization
论文中化学反应过程信息的自动提取及其利用
- 批准号:
23K18500 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Automatic extraction of hazard information from satellite InSAR ground motion data
从卫星InSAR地面运动数据中自动提取危险信息
- 批准号:
2749968 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Studentship
Signal Processing and Information Extraction, from Data to Complex Models and Structures
信号处理和信息提取,从数据到复杂模型和结构
- 批准号:
RGPIN-2018-04079 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Discovery Grants Program - Individual
Maximizing Information Extraction in Smart Condition Monitoring Systems
最大限度地提取智能状态监测系统中的信息
- 批准号:
CRC-2020-00127 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Canada Research Chairs
CAREER: Teaching Machines through Human Explanation for Information Extraction
职业:通过人类解释来教学机器以进行信息提取
- 批准号:
2048211 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Maximizing Information Extraction In Smart Condition Monitoring Systems
最大限度地提取智能状态监测系统中的信息
- 批准号:
CRC-2020-00127 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Canada Research Chairs














{{item.name}}会员




