CAREER: Teaching Machines through Human Explanation for Information Extraction

职业:通过人类解释来教学机器以进行信息提取

基本信息

  • 批准号:
    2048211
  • 负责人:
  • 金额:
    $ 51.31万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-05-15 至 2026-04-30
  • 项目状态:
    未结题

项目摘要

The majority of data being generated by society is free-form textual data. As the volume of text data continues to grow, humans alone cannot hope to be able to understand every piece of textual information published. Hence, a need for machine-based methods to extract salient entities along with their relationships from massive textual data is needed. While efforts to develop such methods have proven successful in academia, that success rarely translates over to practitioners employing extraction systems to solve real-world problems. A significant cause of this failure in translation is the requirement of copious amounts of training examples for a machine to learn extraction models. Even when a sufficient number of examples exist, machines learn very rigid methods, such that even a slight misspelling can cause a failure. Therefore, a re-think of how we develop, refine and maintain such machine-based extraction methods is required. This project proposes a new methodology based around the idea of providing explanations for both correct and incorrect decisions made by a machine, with the intention of requiring far fewer examples for machine training, as well as providing a process of softening the rigidity of current extraction methods. To achieve this goal, this project will solicit (from humans) natural language explanations on how a machine should reason about their task, as well as explanations correcting erroneous reasoning and an alerting system for when a machine’s rationale is possibly going wrong. Rather than treating humans as merely a “source of labels”, this project aims at developing a new learning framework that directly models a human’s natural language explanations to either provide a machine with labeling rationale or correct an observed erroneous rationale. The project will develop explanation-based learning methods that can capture the compositional nature of human natural language explanations, and study explanation-guided model refinement methods to update model parameters based on the provided human explanations regarding undesirable behaviors. To adapt to changing data distribution, this project will formulate a human-in-the-loop continual model refinement framework where problematic model behavioral patterns are automatically identified, and human feedback is solicited to correct the model. With these advancements, the project looks to fundamentally change the way models are trained, refined and updated, and look to do it by exploiting the expert knowledge contained within human explanations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
社会产生的大部分数据都是自由格式的文本数据。随着文本数据量的不断增长,人类无法单独理解发布的每一条文本信息。因此,需要基于机器的方法来从大量文本数据中提取显著实体沿着它们的关系。虽然开发这种方法的努力在学术界已被证明是成功的,但这种成功很少转化为从业者使用提取系统来解决现实世界的问题。翻译失败的一个重要原因是机器需要大量的训练示例来学习提取模型。即使有足够数量的例子,机器也会学习非常严格的方法,即使是轻微的拼写错误也会导致失败。因此,我们需要重新思考如何开发、改进和维护这种基于机器的提取方法。该项目提出了一种新的方法,其思想是为机器做出的正确和不正确的决定提供解释,目的是需要更少的机器训练示例,并提供一个软化当前提取方法刚性的过程。为了实现这一目标,该项目将(从人类那里)征求关于机器应该如何推理其任务的自然语言解释,以及纠正错误推理的解释和机器推理可能出错时的警报系统。该项目的目的不是将人类仅仅视为“标签来源”,而是开发一种新的学习框架,直接对人类的自然语言解释进行建模,为机器提供标记原理或纠正观察到的错误原理。该项目将开发基于解释的学习方法,可以捕捉人类自然语言解释的组成性质,并研究解释引导的模型细化方法,以根据提供的人类对不良行为的解释更新模型参数。为了适应不断变化的数据分布,该项目将制定一个人在回路的持续模型细化框架,其中自动识别有问题的模型行为模式,并征求人类反馈以纠正模型。随着这些进步,该项目希望从根本上改变模型的训练,改进和更新方式,并希望通过利用人类解释中包含的专家知识来实现这一目标。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiang Ren其他文献

ctFS: Converting File Index Traversals to Hardware Memory Translation through Contiguous File Allocation for Persistent Memory
ctFS:通过持久内存的连续文件分配将文件索引遍历转换为硬件内存转换
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ruibin Li;Xiang Ren;Xu Zhao;Siwei He;M. Stumm;Ding Yuan;Alexandra Fedorova
  • 通讯作者:
    Alexandra Fedorova
Mixture of D-Vine copulas for chemical process monitoring
用于化学过程监控的 D-Vine copula 混合物
Amorphous Co-doped MoOx Nanospheres with Core-Shell Structure Toward Effective Oxygen Evolution Reaction
具有核壳结构的非晶共掺杂 MoOx 纳米球可实现有效的析氧反应
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chengying Guo;Xu Sun;Xuan Kuang;Lingfeng Gao;Mingzhu Zhao;Liu Qu;Yong Zhang;Dan Wu;Xiang Ren;Qin Wei
  • 通讯作者:
    Qin Wei
Cardiac troponin I photoelectrochemical sensor: {Mo368} as electrode donor for Bi2S3 and Au co-sensitized FeOOH composite.
心肌肌钙蛋白 I 光电化学传感器:{Mo368} 作为 Bi2S3 和 Au 共敏 FeOOH 复合材料的电极供体。
  • DOI:
    10.1016/j.bios.2020.112157
  • 发表时间:
    2020-03
  • 期刊:
  • 影响因子:
    12.6
  • 作者:
    Chunzhu Bao;Xin Liu;Xinrong Shao;Xiang Ren;Yong Zhang;Xu Sun;Dawei Fan;Qin Wei;Huangxian Ju
  • 通讯作者:
    Huangxian Ju
Compressive Sensing-Based Detector Design for SM-OFDM Massive MIMO High Speed Train Systems
基于压缩感知的 SM-OFDM 大规模 MIMO 高速列车系统检测器设计
  • DOI:
    10.1109/tbc.2017.2731039
  • 发表时间:
    2017-08
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Bo Gong;Lin Gui;Qibo Qin;Xiang Ren
  • 通讯作者:
    Xiang Ren

Xiang Ren的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiang Ren', 18)}}的其他基金

Collaborative Research: Modeling the Invention, Dissemination, and Translation of Scientific Concepts
协作研究:对科学概念的发明、传播和翻译进行建模
  • 批准号:
    1829268
  • 财政年份:
    2018
  • 资助金额:
    $ 51.31万
  • 项目类别:
    Standard Grant

相似海外基金

Teaching machines to see in 4D
教学机器以 4D 方式观看
  • 批准号:
    537560-2018
  • 财政年份:
    2022
  • 资助金额:
    $ 51.31万
  • 项目类别:
    Collaborative Research and Development Grants
CAREER: Teaching Machines to Recognize Complex Visual Concepts in Images through Compositionality
职业:教导机器通过组合性识别图像中的复杂视觉概念
  • 批准号:
    2201710
  • 财政年份:
    2021
  • 资助金额:
    $ 51.31万
  • 项目类别:
    Continuing Grant
CAREER: Teaching Machines to Recognize Complex Visual Concepts in Images through Compositionality
职业:教导机器通过组合性识别图像中的复杂视觉概念
  • 批准号:
    2045773
  • 财政年份:
    2021
  • 资助金额:
    $ 51.31万
  • 项目类别:
    Continuing Grant
Teaching machines to see in 4D
教学机器以 4D 方式观看
  • 批准号:
    537560-2018
  • 财政年份:
    2021
  • 资助金额:
    $ 51.31万
  • 项目类别:
    Collaborative Research and Development Grants
Teaching machines to see in 4D
教学机器以 4D 方式观看
  • 批准号:
    537560-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 51.31万
  • 项目类别:
    Collaborative Research and Development Grants
CAREER: Teaching Machines to Design Self-Assembling Materials
职业:教授机器设计自组装材料
  • 批准号:
    1841800
  • 财政年份:
    2018
  • 资助金额:
    $ 51.31万
  • 项目类别:
    Continuing Grant
EAGER: Teaching Computational Thinking through Programming Wearable Devices as Finite State Machines
EAGER:通过将可穿戴设备编程为有限状态机来教授计算思维
  • 批准号:
    1647023
  • 财政年份:
    2016
  • 资助金额:
    $ 51.31万
  • 项目类别:
    Standard Grant
CAREER: Teaching Machines to Design Self-Assembling Materials
职业:教授机器设计自组装材料
  • 批准号:
    1350008
  • 财政年份:
    2014
  • 资助金额:
    $ 51.31万
  • 项目类别:
    Continuing Grant
A new paradigm for teaching machines to replicate the manipulation skills of humans using tactile sensing in a virtual environment
一种教学机器在虚拟环境中使用触觉感知复制人类操作技能的新范例
  • 批准号:
    DP0210463
  • 财政年份:
    2002
  • 资助金额:
    $ 51.31万
  • 项目类别:
    Discovery Projects
A new paradigm for teaching machines to replicate the manipulation skills of humans using tactile sensing in a virtual environment
一种教学机器在虚拟环境中使用触觉感知复制人类操作技能的新范例
  • 批准号:
    ARC : DP0210463
  • 财政年份:
    2002
  • 资助金额:
    $ 51.31万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了