CAREER: Synthetic quantum materials in superconducting circuits

职业:超导电路中的合成量子材料

基本信息

  • 批准号:
    2145323
  • 负责人:
  • 金额:
    $ 62.86万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2027-06-30
  • 项目状态:
    未结题

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).NON-TECHNICAL DESCRIPTION:Understanding strong interactions and collective quantum effects between sub-atomic particles that take place in certain materials is a grand challenge in modern physics. Better understanding of these strongly correlated interactions is critical as these novel materials have promising properties for advanced technological applications. However, the presence of dissipation and other environmental factors make it very challenging to probe these interactions. This project addresses these challenges by creating synthetic “designer” materials made of interacting microwave photons in superconducting circuits, leveraging the precise yet flexible control of quantum systems and baths available in the experiments. The research aims to develop efficient protocols for creating and controlling synthetic quantum materials and their properties, and to investigate the microscopic dynamics of quantum materials in open driven-dissipative settings. The findings will provide insights on material discovery and design for applications in quantum information science and engineering. The project also launches education and outreach activities aimed at strengthening quantum awareness and quantum proficiency in a wide audience. This includes professional training in quantum research for a diverse group of undergraduate and graduate students, development of new accessible materials for quantum information science education, and broad quantum-related outreach activities for K-12 students and teachers.TECHNICAL DESCRIPTION:Superconducting quantum circuits provide the long coherence, strong interactions, and precise tunability well-suited for the exploration of synthetic quantum materials made of microwave photons. This project supports the development of a synthetic quantum matter platform in superconducting circuits for the investigation of strongly correlated quantum phases and many-body dynamics in driven-dissipative settings. Dynamically tunable broad-band bath is developed and applied to realize efficient and robust methods to stabilize and manipulate many-body phases in circuits, including strongly interacting phases in Bose-Hubbard lattices, topological lattices, and other novel non-equilibrium quantum phases. This project further explores the evolution of quantum information in many-body localized systems, by investigating particle and entanglement dynamics in the presence of thermal or quantum baths and local dissipation. These experiments offer a microscopic view of the dynamics of thermalization towards quantum many-body phases, a cornerstone of our understanding of correlated materials. They also provide insights into the interplay between interaction, topology and dissipation. The driven-dissipative techniques developed in this project for creating and controlling quantum many-body states could be applied to various quantum platforms to engineer and identify robust quantum information resources. The research infrastructure and training materials that result from this award will provide long-term training and educational opportunities for students at all levels and contribute to a diverse workforce in quantum information science and engineering.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项全部或部分由2021年美国救援计划法案(公法117-2)资助。非技术描述:理解发生在某些材料中的亚原子粒子之间的强相互作用和集体量子效应是现代物理学的一个巨大挑战。更好地理解这些强相关的相互作用是至关重要的,因为这些新材料具有先进技术应用的前景。然而,耗散和其他环境因素的存在使得探测这些相互作用非常具有挑战性。该项目通过创建由超导电路中相互作用的微波光子制成的合成“设计师”材料来解决这些挑战,利用实验中可用的量子系统和浴的精确而灵活的控制。该研究旨在开发用于创建和控制合成量子材料及其特性的有效协议,并研究开放驱动耗散环境中量子材料的微观动力学。这些发现将为量子信息科学和工程中的应用提供材料发现和设计方面的见解。该项目还启动了教育和外联活动,旨在加强广大受众的量子意识和量子能力。这包括为不同的本科生和研究生群体提供量子研究的专业培训,为量子信息科学教育开发新的可访问材料,以及为K-12学生和教师提供广泛的量子相关推广活动。技术描述:超导量子电路提供长相干性,强相互作用和精确的可调谐性,非常适合探索由微波光子制成的合成量子材料。该项目支持在超导电路中开发一个合成量子物质平台,用于研究驱动耗散设置中的强关联量子相位和多体动力学。开发并应用动态可调宽带浴来实现稳定和操纵电路中多体相的有效且鲁棒的方法,包括玻色-哈伯德晶格、拓扑晶格中的强相互作用相和其他新型非平衡量子相。该项目通过研究热或量子浴和局部耗散存在下的粒子和纠缠动力学,进一步探索量子信息在多体局域系统中的演化。这些实验提供了对量子多体相热化动力学的微观视角,这是我们理解相关材料的基石。它们还提供了对相互作用、拓扑结构和耗散之间相互作用的见解。该项目开发的用于创建和控制量子多体态的驱动耗散技术可以应用于各种量子平台,以设计和识别强大的量子信息资源。该奖项产生的研究基础设施和培训材料将为各级学生提供长期培训和教育机会,并为量子信息科学和工程领域的多元化劳动力做出贡献。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ruichao Ma其他文献

Molecular biomarkers for the prognosis of breast cancer: role of amino acid metabolism genes
  • DOI:
    10.1007/s13105-025-01088-5
  • 发表时间:
    2025-06-10
  • 期刊:
  • 影响因子:
    4.300
  • 作者:
    Yudong Zhou;Shibo Yu;Lizhe Zhu;Yalong Wang;Chenglong Duan;Danni Li;Jinsui Du;Jiaqi Zhang;Jianing Zhang;Ruichao Ma;Jianjun He;Yu Ren;Bin Wang
  • 通讯作者:
    Bin Wang

Ruichao Ma的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

ExpandQISE: Track 2: Leveraging synthetic degrees of freedom for quantum state engineering in photonic chips
ExpandQISE:轨道 2:利用光子芯片中量子态工程的合成自由度
  • 批准号:
    2328993
  • 财政年份:
    2023
  • 资助金额:
    $ 62.86万
  • 项目类别:
    Continuing Grant
Cross-fertilizing machine learning and synthetic quantum systems
机器学习和合成量子系统的交叉融合
  • 批准号:
    RGPIN-2019-04645
  • 财政年份:
    2022
  • 资助金额:
    $ 62.86万
  • 项目类别:
    Discovery Grants Program - Individual
Developing Synthetic Enzymes to Treat Inborn Errors of Metabolism
开发合成酶来治疗先天性代谢缺陷
  • 批准号:
    10281241
  • 财政年份:
    2021
  • 资助金额:
    $ 62.86万
  • 项目类别:
Developing Synthetic Enzymes to Treat Inborn Errors of Metabolism
开发合成酶来治疗先天性代谢缺陷
  • 批准号:
    10540317
  • 财政年份:
    2021
  • 资助金额:
    $ 62.86万
  • 项目类别:
Cross-fertilizing machine learning and synthetic quantum systems
机器学习和合成量子系统的交叉融合
  • 批准号:
    RGPIN-2019-04645
  • 财政年份:
    2021
  • 资助金额:
    $ 62.86万
  • 项目类别:
    Discovery Grants Program - Individual
Rydberg Synthetic Dimensions: A New Simulator for Quantum Matter
里德伯合成维度:量子物质的新模拟器
  • 批准号:
    2110596
  • 财政年份:
    2021
  • 资助金额:
    $ 62.86万
  • 项目类别:
    Standard Grant
Quantum Simulation in Synthetic Dimensions using Ultracold Molecules
使用超冷分子进行合成维度的量子模拟
  • 批准号:
    2452631
  • 财政年份:
    2020
  • 资助金额:
    $ 62.86万
  • 项目类别:
    Studentship
CAREER: New Synthetic Approaches to Engineering Topology: from Quantum Many-Body Rydberg Atom Arrays to Classical Mechanical Networks
职业:工程拓扑的新综合方法:从量子多体里德伯原子阵列到经典机械网络
  • 批准号:
    1945031
  • 财政年份:
    2020
  • 资助金额:
    $ 62.86万
  • 项目类别:
    Continuing Grant
Cross-fertilizing machine learning and synthetic quantum systems
机器学习和合成量子系统的交叉融合
  • 批准号:
    RGPIN-2019-04645
  • 财政年份:
    2020
  • 资助金额:
    $ 62.86万
  • 项目类别:
    Discovery Grants Program - Individual
Novel synthetic routes towards zinc nitride quantum dots and half-heusler compounds such as LiZnN
氮化锌量子点和 LiZnN 等半高斯勒化合物的新合成路线
  • 批准号:
    2338636
  • 财政年份:
    2019
  • 资助金额:
    $ 62.86万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了