CAREER: Automated Forensic-in-the-Loop Cyber Defense Infrastructure

职业:自动化环路取证网络防御基础设施

基本信息

  • 批准号:
    2145616
  • 负责人:
  • 金额:
    $ 54.76万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2027-06-30
  • 项目状态:
    未结题

项目摘要

Cyber-attacks are becoming increasingly advanced and sophisticated. Advanced attackers monitor their targets for a long time to find out about their vulnerabilities and protective strategies. Such advanced attacks are extremely challenging to prevent and investigate due to their sophisticated and advanced tactics and resources and by their strategy to penetrate the system in unexpected/overlooked ways. Worse, attackers use sophisticated tactics, such as obfuscation and evasive techniques, to thwart or delay forensics investigations. Attackers also compromise a wide range of system components and resources, making it extremely difficult to restore and harden the system. Delayed or incomplete forensic analysis makes it difficult to properly secure the victim’s organization on time, leading to significant damages and losses. To this end, this project develops novel techniques to (1) prevent diverse attacks thoroughly, (2) conduct rapid and comprehensive forensic analysis, and (3) protect the victim’s system rigorously. This project also involves educational activities that broadens participation in computing, by organizing mentoring workshops and coaching the University of Virginia’s Collegiate Cyber Defense Competition team, which includes many female students. This project aims to develop an automated forensic-in-the-loop cyber defense infrastructure that coherently integrates novel defenses, forensic analysis, and hardening approaches. First, the investigator develops attack vector agnostic protection and detection approaches by perturbing inputs and runtime environments that are the weakest links of the attacks. Second, the investigator develops novel automated techniques to detect and eliminate anti-forensic techniques applied to malware. Furthermore, to handle evasive malware, the investigator introduces the adaptive counterfactual execution technique to evolve the runtime environment and execution context. Finally, the investigator develops an automated root cause analysis technique that diagnoses loopholes and identifies potential fixes (e.g., secure configurations).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
网络攻击正变得越来越先进和复杂。高级攻击者对目标进行长时间监控,以了解他们的漏洞和保护策略。这类高级攻击由于其复杂和先进的战术和资源,以及以意想不到/被忽视的方式渗透系统的战略,在预防和调查方面极具挑战性。更糟糕的是,攻击者使用复杂的策略,如混淆和回避技术,来阻挠或拖延取证调查。攻击者还会危害广泛的系统组件和资源,使恢复和加固系统变得极其困难。延迟或不完整的法医分析使受害者的组织很难按时得到适当的保护,从而导致重大损害和损失。为此,该项目开发了新技术,以(1)彻底防止各种攻击,(2)进行快速和全面的法医分析,(3)严格保护受害者的系统。该项目还包括教育活动,通过组织指导研讨会和指导弗吉尼亚大学的大学生网络防御竞赛团队,扩大对计算机的参与,其中包括许多女学生。该项目旨在开发一个自动化的环路取证网络防御基础设施,该基础设施连贯地集成了新的防御、取证分析和加固方法。首先,调查者通过干扰作为攻击最薄弱环节的输入和运行时环境来开发攻击向量不可知的保护和检测方法。其次,调查者开发了新的自动化技术来检测和消除应用于恶意软件的反取证技术。此外,为了处理规避恶意软件,调查者引入了自适应反事实执行技术来演化运行环境和执行上下文。最后,调查员开发了一种自动根本原因分析技术,该技术可以诊断漏洞并确定潜在的修复程序(例如,安全配置)。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
BFTDETECTOR: Automatic Detection of Business Flow Tampering for Digital Content Service
PyFET: Forensically Equivalent Transformation for Python Binary Decompilation
PyFET:Python 二进制反编译的取证等效转换
SynthDB: Synthesizing Database via Program Analysis for Security Testing of Web Applications
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yonghwi Kwon其他文献

AdBudgetKiller: Online Advertising Budget Draining Attack
AdBudgetKiller:在线广告预算耗尽攻击
PIEtrace: Platform independent executable trace
PIEtrace:平台独立的可执行跟踪
Understanding automated code review process and developer experience in industry
了解自动化代码审查流程和行业开发人员经验
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hyungjin Kim;Yonghwi Kwon;Sangwoo Joh;Hyukin Kwon;Yeonhee Ryou;Taeksu Kim
  • 通讯作者:
    Taeksu Kim
J-Force: Forced Execution on JavaScript
J-Force:强制执行 JavaScript
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kyungtae Kim;I. L. Kim;C. Kim;Yonghwi Kwon;Yunhui Zheng;X. Zhang;Dongyan Xu
  • 通讯作者:
    Dongyan Xu
Fast Prediction of Dynamic IR-Drop Using Recurrent U-Net Architecture
使用循环 U-Net 架构快速预测动态 IR 压降

Yonghwi Kwon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yonghwi Kwon', 18)}}的其他基金

SaTC: CORE: Medium: Collaborative: Doctor WHO: Investigation and Prevention of Online Content Management System Abuse
SaTC:核心:媒介:协作:WHO 医生:在线内容管理系统滥用的调查和预防
  • 批准号:
    2426653
  • 财政年份:
    2023
  • 资助金额:
    $ 54.76万
  • 项目类别:
    Standard Grant
OAC Core: Small: Collaborative Research: Data Provenance Infrastructure towards Robust andReliable Data Sharing and Analytics
OAC 核心:小型:协作研究:数据来源基础设施实现稳健可靠的数据共享和分析
  • 批准号:
    1908021
  • 财政年份:
    2019
  • 资助金额:
    $ 54.76万
  • 项目类别:
    Standard Grant
SaTC: CORE: Medium: Collaborative: Doctor WHO: Investigation and Prevention of Online Content Management System Abuse
SaTC:核心:媒介:协作:WHO 医生:在线内容管理系统滥用的调查和预防
  • 批准号:
    1916499
  • 财政年份:
    2019
  • 资助金额:
    $ 54.76万
  • 项目类别:
    Standard Grant
CRII: SaTC: Secure and Comprehensive Forensic Audit Infrastructure for Transparent Heterogeneous Computing
CRII:SaTC:用于透明异构计算的安全且全面的取证审计基础设施
  • 批准号:
    1850392
  • 财政年份:
    2019
  • 资助金额:
    $ 54.76万
  • 项目类别:
    Standard Grant

相似海外基金

Identification and impact of polymers on stem cell products in an automated biomanufacturing platform
自动化生物制造平台中聚合物对干细胞产品的识别和影响
  • 批准号:
    10089013
  • 财政年份:
    2024
  • 资助金额:
    $ 54.76万
  • 项目类别:
    Collaborative R&D
ARC Training Centre for Automated Vehicles in Rural and Remote Regions
ARC农村和偏远地区自动驾驶汽车培训中心
  • 批准号:
    IC230100001
  • 财政年份:
    2024
  • 资助金额:
    $ 54.76万
  • 项目类别:
    Industrial Transformation Training Centres
Scalable and Automated Tuning of Spin-based Quantum Computer Architectures
基于自旋的量子计算机架构的可扩展和自动调整
  • 批准号:
    2887634
  • 财政年份:
    2024
  • 资助金额:
    $ 54.76万
  • 项目类别:
    Studentship
VIPAuto: Robust and Adaptive Visual Perception for Automated Vehicles in Complex Dynamic Scenes
VIPAuto:复杂动态场景中自动驾驶车辆的鲁棒自适应视觉感知
  • 批准号:
    EP/Y015878/1
  • 财政年份:
    2024
  • 资助金额:
    $ 54.76万
  • 项目类别:
    Fellowship
Screen4SpLDs - Development of an Automated Pre-Screening Tool for Specific Learning Disabilities in Children.
Screen4SpLDs - 开发针对儿童特定学习障碍的自动预筛查工具。
  • 批准号:
    EP/Y002121/1
  • 财政年份:
    2024
  • 资助金额:
    $ 54.76万
  • 项目类别:
    Research Grant
CRII: SaTC: Automated Knowledge Representation for IoT Cybersecurity Regulations
CRII:SaTC:物联网网络安全法规的自动化知识表示
  • 批准号:
    2348147
  • 财政年份:
    2024
  • 资助金额:
    $ 54.76万
  • 项目类别:
    Standard Grant
Automated Formal Verification of Quantum Protocols for the Quantum Era
量子时代量子协议的自动形式验证
  • 批准号:
    24K20757
  • 财政年份:
    2024
  • 资助金额:
    $ 54.76万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
RII Track-4:NSF: Automated Design and Innovation of Chemical Production Processes with Intelligent Computing
RII Track-4:NSF:利用智能计算进行化学品生产过程的自动化设计和创新
  • 批准号:
    2327303
  • 财政年份:
    2024
  • 资助金额:
    $ 54.76万
  • 项目类别:
    Standard Grant
Automated Software Testing Platform
自动化软件测试平台
  • 批准号:
    10092457
  • 财政年份:
    2024
  • 资助金额:
    $ 54.76万
  • 项目类别:
    Collaborative R&D
Automated Modelling Assistance for the Creation of Complex Planning Models
用于创建复杂规划模型的自动建模协助
  • 批准号:
    DE240101245
  • 财政年份:
    2024
  • 资助金额:
    $ 54.76万
  • 项目类别:
    Discovery Early Career Researcher Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了