CAREER: Foundations of Federated Multi-Task Learning
职业:联合多任务学习的基础
基本信息
- 批准号:2145670
- 负责人:
- 金额:$ 59.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Mobile phones, wearable devices, and smart homes form just a few of the modern distributed networks generating a wealth of data each day. Due to the growing computational power of edge devices, coupled with concerns over transmitting private data, it is increasingly attractive to store data locally and push network computation to the edge. Federated learning explores training machine learning models at the edge in distributed networks. While federated learning has shown tremendous promise for enabling edge applications, practical deployment is currently stymied by a number of competing constraints. In addition to being accurate, federated learning methods must scale to potentially massive networks of devices, and must exhibit trustworthy behavior---addressing pragmatic concerns related to issues such as user privacy, fairness, and robustness. In this project, we explore multi-task learning, a technique that learns separate but related models for each device in the network, as a unified approach to address the competing constraints of federated learning. The objective of the project is to develop scalable multi-task learning methods that are suitable for practical federated networks, and to rigorously study the foundational properties of federated multi-task learning in terms of the goals of accuracy, scalability, and trustworthiness. In doing so, the research will unlock a new generation of federated learning systems that can holistically address the constraints of realistic federated networks.The goal of this project is to establish and rigorously study the use of federated multi-task learning. While the accuracy benefits of federated multi-task learning are well-known, the work charts two new directions. First, the project develops methods to realize multi-task learning at scale in massive federated networks. Secondly, the project shows that multi-task learning, by improving privacy, fairness, and robustness, is in fact key for trustworthy federated learning. The technical aims of the project work are divided into three thrusts. First, by approximating standard notions of multi-task learning, the project will develop and rigorously study a family of highly scalable federated multi-task learning objectives. Second, the privacy implications of multi-task learning will be analyzed and evaluated in order to understand trade-offs between privacy and utility in federated networks. Finally, this project will explore tensions between fairness (in terms of performance disparities across devices) and robustness (to data and model poisoning attacks) in federated learning. Although these goals may be at odds, this project aims to show that multi-task learning can inherently improve both fairness and robustness, helping both to be achieved jointly. Taken together, this work has the potential to cause a paradigm-shift in the way federated learning systems are designed, implemented, and analyzed.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
移动的手机、可穿戴设备和智能家居只是每天产生大量数据的现代分布式网络中的一小部分。由于边缘设备的计算能力不断增长,加上对传输私有数据的担忧,在本地存储数据并将网络计算推到边缘越来越有吸引力。联邦学习在分布式网络的边缘探索训练机器学习模型。虽然联邦学习在实现边缘应用方面表现出了巨大的潜力,但实际部署目前受到许多竞争性限制的阻碍。除了准确之外,联邦学习方法还必须扩展到潜在的大规模设备网络,并且必须表现出值得信赖的行为-解决与用户隐私,公平性和鲁棒性等问题相关的实用问题。在这个项目中,我们探索了多任务学习,这是一种为网络中的每个设备学习独立但相关的模型的技术,作为一种统一的方法来解决联邦学习的竞争约束。该项目的目标是开发适用于实际联邦网络的可扩展多任务学习方法,并严格研究联邦多任务学习在准确性,可扩展性和可信度目标方面的基本属性。在这样做的过程中,该研究将解锁新一代的联邦学习系统,可以全面解决现实联邦网络的约束。该项目的目标是建立和严格研究联邦多任务学习的使用。虽然联邦多任务学习的准确性优势是众所周知的,但这项工作描绘了两个新的方向。首先,该项目开发了在大规模联邦网络中实现大规模多任务学习的方法。其次,该项目表明,多任务学习通过提高隐私性、公平性和鲁棒性,实际上是可信联邦学习的关键。项目工作的技术目标分为三个方面。首先,通过逼近多任务学习的标准概念,该项目将开发并严格研究一系列高度可扩展的联邦多任务学习目标。其次,多任务学习的隐私影响将被分析和评估,以了解联邦网络中隐私和效用之间的权衡。最后,本项目将探讨联邦学习中公平性(在设备之间的性能差异方面)和鲁棒性(对数据和模型中毒攻击)之间的紧张关系。虽然这些目标可能不一致,但该项目旨在表明多任务学习可以从本质上提高公平性和鲁棒性,帮助两者共同实现。总之,这项工作有可能导致联邦学习系统的设计,实施和分析的方式范式转变。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Private Multi-Task Learning: Formulation and Applications to Federated Learning
- DOI:
- 发表时间:2021-08
- 期刊:
- 影响因子:0
- 作者:Shengyuan Hu;Zhiwei Steven Wu;Virginia Smith
- 通讯作者:Shengyuan Hu;Zhiwei Steven Wu;Virginia Smith
On Tilted Losses in Machine Learning: Theory and Applications
- DOI:
- 发表时间:2021-09
- 期刊:
- 影响因子:0
- 作者:Tian Li;Ahmad Beirami;Maziar Sanjabi;Virginia Smith
- 通讯作者:Tian Li;Ahmad Beirami;Maziar Sanjabi;Virginia Smith
On Privacy and Personalization in Cross-Silo Federated Learning
- DOI:10.48550/arxiv.2206.07902
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Ziyu Liu;Shengyuan Hu;Zhiwei Steven Wu;Virginia Smith
- 通讯作者:Ziyu Liu;Shengyuan Hu;Zhiwei Steven Wu;Virginia Smith
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Virginia Smith其他文献
Is Support Set Diversity Necessary for Meta-Learning?
支持集多样性对于元学习是必要的吗?
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Amrith Rajagopal Setlur;Oscar Li;Virginia Smith - 通讯作者:
Virginia Smith
Grass: Compute Efficient Low-Memory LLM Training with Structured Sparse Gradients
Grass:使用结构化稀疏梯度计算高效的低内存 LLM 训练
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Aashiq Muhamed;Oscar Li;David Woodruff;Mona Diab;Virginia Smith - 通讯作者:
Virginia Smith
Power and Participation in the Workplace
工作场所的权力和参与
- DOI:
10.1007/978-1-4615-4193-6_12 - 发表时间:
2000 - 期刊:
- 影响因子:2
- 作者:
K. Klein;R. S. Ralls;Virginia Smith;Christina A. Douglas - 通讯作者:
Christina A. Douglas
Simple Statistics for Correlating Survey Responses
关联调查回复的简单统计
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0.3
- 作者:
Robert Hollingsworth;Topaz Collins;Virginia Smith;Scot Nelson - 通讯作者:
Scot Nelson
Temporal Soil Dynamics in Bioinfiltration Systems
生物渗透系统中的时态土壤动力学
- DOI:
10.1061/(asce)ir.1943-4774.0001617 - 发表时间:
2021 - 期刊:
- 影响因子:2.6
- 作者:
Christine Smith;R. Connolly;R. Ampomah;Amanda Hess;K. Sample;Virginia Smith - 通讯作者:
Virginia Smith
Virginia Smith的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Virginia Smith', 18)}}的其他基金
Equipment: MRI: Track 2 Acquisition of a Hydraulic and Sediment Recirculation Flume to Advance Fundamental Research in Urban Stormwater and Fluvial Processes
设备: MRI:轨道 2 获取水力和沉积物再循环水槽,以推进城市雨水和河流过程的基础研究
- 批准号:
2320356 - 财政年份:2023
- 资助金额:
$ 59.72万 - 项目类别:
Standard Grant
Planning: SCC-PG: Smart, Sustainable, and Equitable Green Stormwater Systems in Urban Communities
规划:SCC-PG:城市社区智能、可持续和公平的绿色雨水系统
- 批准号:
2228035 - 财政年份:2022
- 资助金额:
$ 59.72万 - 项目类别:
Standard Grant
CAS- Climate: CDS&E: Facilitating Sustainable and Fair Transformation of GSI through AI
CAS-气候:CDS
- 批准号:
2152834 - 财政年份:2022
- 资助金额:
$ 59.72万 - 项目类别:
Standard Grant
Collaborative Research: An Inter-disciplinary Approach to Constraining Paleo-geomorphic Responses to the Eocene-Oligocene Hothouse to Icehouse Transition
合作研究:限制始新世-渐新世温室向冰室转变的古地貌响应的跨学科方法
- 批准号:
1844180 - 财政年份:2019
- 资助金额:
$ 59.72万 - 项目类别:
Standard Grant
相似海外基金
Mathematical Foundations of Intelligence: An "Erlangen Programme" for AI
智能的数学基础:人工智能的“埃尔兰根计划”
- 批准号:
EP/Y028872/1 - 财政年份:2024
- 资助金额:
$ 59.72万 - 项目类别:
Research Grant
SAFER - Secure Foundations: Verified Systems Software Above Full-Scale Integrated Semantics
SAFER - 安全基础:高于全面集成语义的经过验证的系统软件
- 批准号:
EP/Y035976/1 - 财政年份:2024
- 资助金额:
$ 59.72万 - 项目类别:
Research Grant
Statistical Foundations for Detecting Anomalous Structure in Stream Settings (DASS)
检测流设置中的异常结构的统计基础 (DASS)
- 批准号:
EP/Z531327/1 - 财政年份:2024
- 资助金额:
$ 59.72万 - 项目类别:
Research Grant
Social Foundations of Cryptography
密码学的社会基础
- 批准号:
EP/X017524/1 - 财政年份:2024
- 资助金额:
$ 59.72万 - 项目类别:
Research Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
- 批准号:
2402851 - 财政年份:2024
- 资助金额:
$ 59.72万 - 项目类别:
Continuing Grant
Conference: Theory and Foundations of Statistics in the Era of Big Data
会议:大数据时代的统计学理论与基础
- 批准号:
2403813 - 财政年份:2024
- 资助金额:
$ 59.72万 - 项目类别:
Standard Grant
CAREER: Statistical foundations of particle tracking and trajectory inference
职业:粒子跟踪和轨迹推断的统计基础
- 批准号:
2339829 - 财政年份:2024
- 资助金额:
$ 59.72万 - 项目类别:
Continuing Grant
CAREER: Architectural Foundations for Practical Privacy-Preserving Computation
职业:实用隐私保护计算的架构基础
- 批准号:
2340137 - 财政年份:2024
- 资助金额:
$ 59.72万 - 项目类别:
Continuing Grant
CAREER: Foundations, Algorithms, and Tools for Browser Invalidation
职业:浏览器失效的基础、算法和工具
- 批准号:
2340192 - 财政年份:2024
- 资助金额:
$ 59.72万 - 项目类别:
Continuing Grant
CAREER: Foundations of semi-infinite and equilibrium constrained optimization
职业:半无限和平衡约束优化的基础
- 批准号:
2340858 - 财政年份:2024
- 资助金额:
$ 59.72万 - 项目类别:
Continuing Grant