CAS- Climate: CDS&E: Facilitating Sustainable and Fair Transformation of GSI through AI
CAS-气候:CDS
基本信息
- 批准号:2152834
- 负责人:
- 金额:$ 49.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-15 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
As climate change exacerbates environmental challenges associated with urban growth, green stormwater infrastructure (GSI) is a prevalent stormwater mitigation strategy to provide resilience and mitigate the impacts of development on flooding. In parallel, fully sustainable GSI systems must confront the challenges of historically unequitable distribution of infrastructure. The current data revolution has reached municipal stormwater programs; however, these programs are limited by a lack of knowledge of GSI life-cycle dynamics, high performance and emerging computational tools, and how to integrate new science into design and planning decisions. There is a scientific gap in the space formed among GSI design, performance function, and planning decisions that requires bridging hydrologic science, urban planning, and data analytics. This project leverages innovations in artificial intelligence (AI), advancements in the empirical and theoretical understanding of urban hydrologic science, and social data to produce a new model of GSI dynamics that considers social and environmental equity issues. This model will flip the paradigm of infrastructure planning and put the impact on society and the environment on par with engineering solutions to flooding. The model will be made available for use by public and private practitioners to plan, develop, and manage more sustainable and equitable GSI, and by researchers to deepen convergent knowledge of the complex social issues associated with urban flooding. The current state of GSI research is ripe for the application of AI techniques to advance GSI knowledge to discern key parameters, optimize GSI design and development, and enable future performance forecasts in a changing environment. For this project, civil engineers, computer scientists, and geographers are joining together to produce a new platform that uses AI in a dynamic environment with multiple data modalities, ranging from their spatial and temporal characteristics to data types. The research framework acknowledges the wider implications of GSI and its high interdependency and connection to the surrounding community and aims to improve social justice of GSI design through an equity-aware AI model. This project will use a large GSI monitoring relational database (housed at Villanova University) by combining GSI performance data and city-wide open data and applying machine learning methods to develop predictive models applicable across the US. This work targets advancing understanding of GSI dynamics by forecasting the performance of GSIs for a given array of conditions and constraints in urban settings to equitably maximize GSI community benefits. The project will support a diverse faculty team and engage students, urban communities, and industry and academic colleagues by: (1) creating state-of- the-art research and mentoring opportunities for graduate and undergraduate students from underrepresented backgrounds, (2) developing and delivering GSI learning modules for practitioners, and (3) integrating and promoting issues of equity and sustainability within urban stormwater management.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着气候变化加剧与城市发展相关的环境挑战,绿色雨水基础设施(GSI)是一种流行的雨水缓解策略,可提供抵御能力并减轻发展对洪水的影响。与此同时,完全可持续的 GSI 系统必须面对历史上基础设施分配不公平的挑战。当前的数据革命已经影响到市政雨水计划;然而,这些项目由于缺乏对 GSI 生命周期动态、高性能和新兴计算工具以及如何将新科学融入设计和规划决策的了解而受到限制。 GSI 设计、性能功能和规划决策之间存在科学差距,需要将水文科学、城市规划和数据分析联系起来。该项目利用人工智能 (AI) 创新、城市水文科学实证和理论理解的进步以及社会数据,产生考虑社会和环境公平问题的 GSI 动态新模型。该模型将颠覆基础设施规划的范式,将对社会和环境的影响与洪水工程解决方案相媲美。该模型将供公共和私人从业者使用,以规划、开发和管理更可持续和公平的 GSI,并供研究人员使用,以加深对与城市洪水相关的复杂社会问题的聚合知识。 GSI 研究的现状已经成熟,可以应用人工智能技术来推进 GSI 知识,以识别关键参数、优化 GSI 设计和开发,并在不断变化的环境中实现未来的性能预测。在这个项目中,土木工程师、计算机科学家和地理学家共同开发了一个新平台,该平台在动态环境中使用人工智能,具有多种数据模式,从空间和时间特征到数据类型。该研究框架承认 GSI 的更广泛影响及其与周围社区的高度相互依赖性和联系,旨在通过具有公平意识的人工智能模型改善 GSI 设计的社会正义。该项目将使用大型 GSI 监控关系数据库(位于维拉诺瓦大学),结合 GSI 性能数据和全市开放数据,并应用机器学习方法来开发适用于全美国的预测模型。这项工作的目标是通过预测 GSI 在城市环境中给定条件和约束条件下的表现来增进对 GSI 动态的理解,以公平地最大化 GSI 社区利益。该项目将支持多元化的教师团队,并通过以下方式吸引学生、城市社区、行业和学术同事:(1) 为来自弱势背景的研究生和本科生创造最先进的研究和指导机会,(2) 为从业者开发和提供 GSI 学习模块,以及 (3) 在城市雨水管理中整合和促进公平和可持续发展问题。该奖项反映了 NSF 的 法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Virginia Smith其他文献
Is Support Set Diversity Necessary for Meta-Learning?
支持集多样性对于元学习是必要的吗?
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Amrith Rajagopal Setlur;Oscar Li;Virginia Smith - 通讯作者:
Virginia Smith
Grass: Compute Efficient Low-Memory LLM Training with Structured Sparse Gradients
Grass:使用结构化稀疏梯度计算高效的低内存 LLM 训练
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Aashiq Muhamed;Oscar Li;David Woodruff;Mona Diab;Virginia Smith - 通讯作者:
Virginia Smith
Power and Participation in the Workplace
工作场所的权力和参与
- DOI:
10.1007/978-1-4615-4193-6_12 - 发表时间:
2000 - 期刊:
- 影响因子:2
- 作者:
K. Klein;R. S. Ralls;Virginia Smith;Christina A. Douglas - 通讯作者:
Christina A. Douglas
Simple Statistics for Correlating Survey Responses
关联调查回复的简单统计
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0.3
- 作者:
Robert Hollingsworth;Topaz Collins;Virginia Smith;Scot Nelson - 通讯作者:
Scot Nelson
Temporal Soil Dynamics in Bioinfiltration Systems
生物渗透系统中的时态土壤动力学
- DOI:
10.1061/(asce)ir.1943-4774.0001617 - 发表时间:
2021 - 期刊:
- 影响因子:2.6
- 作者:
Christine Smith;R. Connolly;R. Ampomah;Amanda Hess;K. Sample;Virginia Smith - 通讯作者:
Virginia Smith
Virginia Smith的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Virginia Smith', 18)}}的其他基金
Equipment: MRI: Track 2 Acquisition of a Hydraulic and Sediment Recirculation Flume to Advance Fundamental Research in Urban Stormwater and Fluvial Processes
设备: MRI:轨道 2 获取水力和沉积物再循环水槽,以推进城市雨水和河流过程的基础研究
- 批准号:
2320356 - 财政年份:2023
- 资助金额:
$ 49.95万 - 项目类别:
Standard Grant
CAREER: Foundations of Federated Multi-Task Learning
职业:联合多任务学习的基础
- 批准号:
2145670 - 财政年份:2022
- 资助金额:
$ 49.95万 - 项目类别:
Continuing Grant
Planning: SCC-PG: Smart, Sustainable, and Equitable Green Stormwater Systems in Urban Communities
规划:SCC-PG:城市社区智能、可持续和公平的绿色雨水系统
- 批准号:
2228035 - 财政年份:2022
- 资助金额:
$ 49.95万 - 项目类别:
Standard Grant
Collaborative Research: An Inter-disciplinary Approach to Constraining Paleo-geomorphic Responses to the Eocene-Oligocene Hothouse to Icehouse Transition
合作研究:限制始新世-渐新世温室向冰室转变的古地貌响应的跨学科方法
- 批准号:
1844180 - 财政年份:2019
- 资助金额:
$ 49.95万 - 项目类别:
Standard Grant
相似海外基金
What is the impact of increasing boreal forest fires on Arctic climate and sea ice?
北方森林火灾的增加对北极气候和海冰有何影响?
- 批准号:
2337045 - 财政年份:2024
- 资助金额:
$ 49.95万 - 项目类别:
Standard Grant
Collaborative Research: BoCP-Implementation: Testing Evolutionary Models of Biotic Survival and Recovery from the Permo-Triassic Mass Extinction and Climate Crisis
合作研究:BoCP-实施:测试二叠纪-三叠纪大规模灭绝和气候危机中生物生存和恢复的进化模型
- 批准号:
2325380 - 财政年份:2024
- 资助金额:
$ 49.95万 - 项目类别:
Standard Grant
ALPACA - Advancing the Long-range Prediction, Attribution, and forecast Calibration of AMOC and its climate impacts
APACA - 推进 AMOC 及其气候影响的长期预测、归因和预报校准
- 批准号:
2406511 - 财政年份:2024
- 资助金额:
$ 49.95万 - 项目类别:
Standard Grant
Rossbypalooza 2024: A Student-led Summer School on Climate and Extreme Events Conference; Chicago, Illinois; July 22-August 2, 2024
Rossbypalooza 2024:学生主导的气候和极端事件暑期学校会议;
- 批准号:
2406927 - 财政年份:2024
- 资助金额:
$ 49.95万 - 项目类别:
Standard Grant
Conference: Workshop on Mobilizing Our Universities for Education on Energy Use, Carbon Emissions, and Climate Change
会议:动员大学开展能源使用、碳排放和气候变化教育研讨会
- 批准号:
2402605 - 财政年份:2024
- 资助金额:
$ 49.95万 - 项目类别:
Standard Grant
Postdoctoral Fellowship: EAR-PF: Assessing the net climate impact of tropical peatland restoration: the role of methane
博士后奖学金:EAR-PF:评估热带泥炭地恢复对气候的净影响:甲烷的作用
- 批准号:
2305578 - 财政年份:2024
- 资助金额:
$ 49.95万 - 项目类别:
Fellowship Award
NSF PRFB FY 2023: Considering evolutionary responses to temperature variability when predicting risk to climate change and disease in amphibians
NSF PRFB 2023 财年:在预测气候变化和两栖动物疾病风险时考虑对温度变化的进化反应
- 批准号:
2305659 - 财政年份:2024
- 资助金额:
$ 49.95万 - 项目类别:
Fellowship Award
Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
- 批准号:
2332469 - 财政年份:2024
- 资助金额:
$ 49.95万 - 项目类别:
Continuing Grant
NSF Engines Development Award: Creating climate-resilient opportunities for plant systems (NC)
NSF 发动机开发奖:为工厂系统创造气候适应机会 (NC)
- 批准号:
2315399 - 财政年份:2024
- 资助金额:
$ 49.95万 - 项目类别:
Cooperative Agreement
The global impact of high summer temperature on heatstroke mortality in the current climate scenario
当前气候情景下夏季高温对中暑死亡率的全球影响
- 批准号:
24K13527 - 财政年份:2024
- 资助金额:
$ 49.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




