CAREER: Using Stochastic Techniques to Understand and Predict the Flow of Non-spherical Particles

职业:使用随机技术来理解和预测非球形颗粒的流动

基本信息

  • 批准号:
    2145871
  • 负责人:
  • 金额:
    $ 54.37万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-05-01 至 2027-04-30
  • 项目状态:
    未结题

项目摘要

Flows involving dense suspensions of particles in gas, which are known as granular flows, are common in nature and industry. In many cases of practical importance, the suspended particles have an irregular shape (i.e., non-spherical), which makes predicting the flow behavior of the suspension especially challenging with currently available methods. As a result, the design of many particulate processes often relies on costly empirical trial-and-error testing. This CAREER project will develop a physics-based stochastic model that accounts for irregular particle shapes to predict particle dynamics more accurately in large-scale systems. Results of the project will be useful in extending granular flow theory for idealized spherical particles to more realistic granular media and in providing new solutions to technical challenges that occur in particle technology. The project will involve research training for graduate and undergraduate students and will prepare them for possible careers involving particle technology. The research team will participate with the Purdue Engineering Outreach club to bring demonstrations of particulate flows for K-12 students in local schools.The goal of this CAREER project is to use stochastic methods to develop a physics-based model for predicting particle flows in systems containing billions of particles. Current state-of-the-art discrete element methods for non-spherical particles are limited to fewer than one million particles. By comparison, a single cup of sand contains approximately 100 million particles. To achieve this goal, the project will develop high-fidelity simulations that capture the dynamics of colliding particles to construct a stochastic model for large-scale systems. Discrete element simulations will be performed to determine how non-spherical particles scatter during collisions and redistribute rotational and translational energies. Machine learning tools will then be employed to build probability distribution functions that relate the pre-collision to the post-collision states of particles. The probability distribution functions will then be incorporated into a direct simulation Monte Carlo solver that can simulate the dynamics of systems containing billions of particles. To validate the stochastic model, comparisons will first be made to deterministic discrete element simulations for relatively small-scale systems. The accuracy of the stochastic model will then be assessed for larger scale systems by comparing results with available experimental data in the literature and with data from in-house tests. In addition to capturing the complex physics that arise due to particle shape effects, the project will create a framework for improving predictions of other complex phenomena such as particle attrition and agglomeration.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
涉及气体中的颗粒的稠密悬浮物的流动,被称为颗粒流,在自然界和工业中是常见的。 在许多具有实际重要性的情况下,悬浮颗粒具有不规则形状(即,非球形),这使得预测悬浮液的流动行为对于当前可用的方法尤其具有挑战性。 因此,许多颗粒工艺的设计往往依赖于昂贵的经验试错测试。 这个CAREER项目将开发一个基于物理的随机模型,该模型考虑了不规则的颗粒形状,以更准确地预测大规模系统中的颗粒动力学。 该项目的结果将是有益的扩展颗粒流理论的理想化球形颗粒更现实的颗粒介质,并在提供新的解决方案,发生在颗粒技术的技术挑战。 该项目将涉及研究生和本科生的研究培训,并将为他们可能从事的涉及粒子技术的职业做好准备。 该研究团队将与普渡大学工程外展俱乐部合作,为当地学校的K-12学生带来颗粒流演示。该CAREER项目的目标是使用随机方法开发一个基于物理的模型,用于预测包含数十亿颗粒的系统中的颗粒流。当前用于非球形颗粒的最先进的离散单元方法限于少于一百万个颗粒。 相比之下,一杯沙子含有大约1亿个颗粒。为了实现这一目标,该项目将开发高保真模拟,捕捉碰撞粒子的动力学,以构建大规模系统的随机模型。将进行离散元模拟,以确定非球形粒子在碰撞过程中如何散射,并重新分配旋转和平移能量。然后将使用机器学习工具来构建概率分布函数,将粒子的碰撞前状态与碰撞后状态联系起来。然后,概率分布函数将被纳入直接模拟蒙特卡罗求解器,该求解器可以模拟包含数十亿粒子的系统的动力学。为了验证随机模型,将首先进行比较,以确定性的离散元模拟相对较小的规模的系统。随机模型的准确性,然后将评估较大规模的系统,通过比较结果与现有的实验数据在文献中,并从内部测试的数据。除了捕捉由于粒子形状效应而产生的复杂物理现象外,该项目还将创建一个框架,用于改进对粒子磨损和团聚等其他复杂现象的预测。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aaron Morris其他文献

Thermal analysis of a solid particle light-trapping planar cavity receiver using computational fluid dynamics
利用计算流体动力学对固体颗粒光捕获平面腔式接收器进行热分析
  • DOI:
    10.1016/j.applthermaleng.2025.126427
  • 发表时间:
    2025-08-15
  • 期刊:
  • 影响因子:
    6.900
  • 作者:
    Chathusha Punchi Wedikkara;Janna Martinek;Zhiwen Ma;Aaron Morris
  • 通讯作者:
    Aaron Morris
The IT-BME Project: Integrating Inclusive Teaching in Biomedical Engineering Through Faculty/Graduate Partnerships
IT-BME 项目:通过教师/研究生合作整合生物医学工程的包容性教学
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Patricia Jaimes;Elizabeth Bottorff;Theo Hopper;Javiera Jilberto;Jessica King;Monica Wall;Maria Coronel;Karin Jensen;Elizabeth Mays;Aaron Morris;James Weiland;Melissa Wrobel;David Nordsletten;Tershia A. Pinder
  • 通讯作者:
    Tershia A. Pinder
NANOPARTICLE ENCAPSULATION OF THE SPECIALIZED PRO-RESOLVING MEDIATOR MARESIN-2: A NOVEL APPROACH FOR PROMOTING MUCOSAL REPAIR IN THE INTESTINE
  • DOI:
    10.1053/j.gastro.2023.11.188
  • 发表时间:
    2024-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jael Miranda-Guzman;Aaron Morris;Miguel Quiros;Jennifer Brazil;Charles Parkos;Asma Nusrat
  • 通讯作者:
    Asma Nusrat
Heat transfer and flow analysis of a novel particle heater using CFD-DEM
使用 CFD-DEM 对新型颗粒加热器进行传热和流动分析
  • DOI:
    10.1016/j.powtec.2024.119858
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Jason Schirck;Aaron Morris
  • 通讯作者:
    Aaron Morris
System and component development for long-duration energy storage using particle thermal energy storage
  • DOI:
    10.1016/j.applthermaleng.2022.119078
  • 发表时间:
    2022-11-05
  • 期刊:
  • 影响因子:
  • 作者:
    Zhiwen Ma;Xingchao Wang;Patrick Davenport;Jeffrey Gifford;Korey Cook;Janna Martinek;Jason Schirck;Aaron Morris;Matthew Lambert;Ruichong Zhang
  • 通讯作者:
    Ruichong Zhang

Aaron Morris的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目

相似海外基金

Braking the limits of experts' somatosensory perception using stochastic resonance
利用随机共振突破专家体感感知的极限
  • 批准号:
    23KJ2225
  • 财政年份:
    2023
  • 资助金额:
    $ 54.37万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Understanding the Critical Role of Seasonality for El Niño/Southern Oscillation (ENSO) Variability, Using Empirical Stochastic-Dynamic Models and Physics-Based Coupled Models
使用经验随机动态模型和基于物理的耦合模型了解季节性对厄尔尼诺/南方涛动 (ENSO) 变异性的关键作用
  • 批准号:
    2311162
  • 财政年份:
    2023
  • 资助金额:
    $ 54.37万
  • 项目类别:
    Standard Grant
Prediction of viral evolution trajectories on antigenic space using a stochastic immune escape model
使用随机免疫逃逸模型预测抗原空间上的病毒进化轨迹
  • 批准号:
    23K18150
  • 财政年份:
    2023
  • 资助金额:
    $ 54.37万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Optimising stochastic systems using streaming simulation.
使用流模拟优化随机系统。
  • 批准号:
    2753514
  • 财政年份:
    2022
  • 资助金额:
    $ 54.37万
  • 项目类别:
    Studentship
Using stochastic optimal feedback control and computational motor control to design personalized and adaptive human robot interfaces
使用随机最优反馈控制和计算电机控制来设计个性化和自适应人类机器人界面
  • 批准号:
    RGPIN-2021-02625
  • 财政年份:
    2022
  • 资助金额:
    $ 54.37万
  • 项目类别:
    Discovery Grants Program - Individual
Multi-Hadron Interactions using Lattice QCD with the Stochastic LapH Method
使用晶格 QCD 和随机 LapH 方法进行多强子相互作用
  • 批准号:
    2209167
  • 财政年份:
    2022
  • 资助金额:
    $ 54.37万
  • 项目类别:
    Standard Grant
Development of mathematical model of thermo-fluid phenomena in microchannel with stochastic connections using determinism and probability theory
使用确定论和概率论开发具有随机连接的微通道中热流体现象的数学模型
  • 批准号:
    22K18769
  • 财政年份:
    2022
  • 资助金额:
    $ 54.37万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
A study of stochastic gradient descent algorithms in the high-dimensional limit using random matrix theory
利用随机矩阵理论研究高维极限下的随机梯度下降算法
  • 批准号:
    569306-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 54.37万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Using stochastic optimal feedback control and computational motor control to design personalized and adaptive human robot interfaces
使用随机最优反馈控制和计算电机控制来设计个性化和自适应人类机器人界面
  • 批准号:
    RGPIN-2021-02625
  • 财政年份:
    2021
  • 资助金额:
    $ 54.37万
  • 项目类别:
    Discovery Grants Program - Individual
Reduced-order modelling of jet noise using a map-based stochastic turbulence approach
使用基于地图的随机湍流方法对喷气噪声进行降阶建模
  • 批准号:
    470140627
  • 财政年份:
    2021
  • 资助金额:
    $ 54.37万
  • 项目类别:
    WBP Position
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了