CAREER: Nonlocal Metasurfaces with All-Angle Control of Light

职业:具有全角度光控制的非局部超表面

基本信息

  • 批准号:
    2146021
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-04-01 至 2027-03-31
  • 项目状态:
    未结题

项目摘要

Angle-resolved modulation of light is at the heart of technologies such as cameras, microscopes, LiDAR, Li-Fi, and augmented-reality devices. Miniaturization of these devices are important for mobile, wearable, medical (e.g., endoscope), and automobile applications. Nanostructures designed to tailor the flow of light can substantially bring down the size, weight, and cost of such devices, but a paradigm shift is necessary to come up with designs that impart the appropriate modulation for not just one but all of the incident angles of interest. This research program will build the analytical and numerical tools for designing photonic devices with all-angle control of light, as well as exploring new designs that can enable compact cameras with large field of view and high-speed spatial light modulators. The computational tools developed will be made open source. Knowledge created from this research program will be incorporated into a new graduate course on applied physics at USC. These activities are further integrated with teaching and outreach activities including high school and undergraduate students in the research program, creating STEM projects for high school students, and introducing interactive optics demos to K-12 classrooms.Optical metasurfaces provide a versatile platform for spatially-resolved modulation of the phase, amplitude, and polarization of light while being amendable to large-scale fabrication. However, the widely adopted unit-cell-based locally periodic approximation is inaccurate and suboptimal for large-angle operations, and local phase-shift profiles cannot describe angle-multiplexed responses which are fundamentally nonlocal. While designs based on full-wave simulations can in principle overcome these limitations, they are extremely time consuming given the large sizes of metasurfaces and the numerous input and output states involved. This research program will develop new numerical methods that are orders-of-magnitude more efficient in computing the transmission matrices of large-area metasurfaces, introduce new perfectly matched layers that can significantly reduce the computation domain of metasurface simulations, establish fundamental thickness bounds for nonlocal metasurfaces with a large field of view, and design and realize new classes of nonlocal metasurfaces that are enabled by the preceding tools including compact wide-field-of-view imaging systems that reach the fundamental bounds and high-speed metasurface spatial light modulators. Beyond metasurfaces, these studies will also improve the fundamental understanding of multi-mode optical systems and create numerical tools for the broader scientific community.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
光的角度分辨调制是相机、显微镜、LiDAR、Li-Fi和增强现实设备等技术的核心。这些设备的小型化对于移动的、可穿戴的、医疗(例如,内窥镜)和汽车应用。设计用于定制光的流动的纳米结构可以大大降低这种设备的尺寸,重量和成本,但是必须进行范式转变,以提出不仅对一个而是所有感兴趣的入射角进行适当调制的设计。该研究计划将建立分析和数值工具,用于设计具有全角度光控制的光子器件,并探索新的设计,使紧凑型相机具有大视场和高速空间光调制器。开发的计算工具将开放源码。从这个研究项目中创造的知识将被纳入南加州大学应用物理学的新研究生课程。这些活动进一步与教学和推广活动相结合,包括高中和本科生的研究计划,为高中生创建STEM项目,并将交互式光学演示引入K-12教室。光学超颖表面提供了一个多功能平台,用于光的相位,振幅和偏振的空间分辨调制,同时可用于大规模制造。然而,广泛采用的基于单元格的局部周期近似是不准确的,次优的大角度操作,和本地相移配置文件不能描述角度复用的响应,这是根本上非本地的。虽然基于全波模拟的设计原则上可以克服这些限制,但由于超表面尺寸大,涉及众多输入和输出状态,因此非常耗时。该研究计划将开发新的数值方法,这些方法在计算大面积超颖表面的传输矩阵时效率更高,引入新的完全匹配层,可以显着减少超颖表面模拟的计算域,为具有大视场的非局部超颖表面建立基本厚度界限,并设计和实现新的类别的非局部超颖表面,这些超颖表面由前述工具实现,包括达到基本边界的紧凑宽视场成像系统和高速超颖表面空间光调制器。除了超颖表面,这些研究还将提高对多模光学系统的基本理解,并为更广泛的科学界创造数值工具。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Transmission Efficiency Limit for Nonlocal Metalenses
Fast Multi-source Electromagnetic Simulations using Augmented Partial Factorization
使用增强型部分分解进行快速多源电磁仿真
  • DOI:
    10.23919/aces57841.2023.10114786
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lin, Ho-Chun;Wang, Zeyu;Hsu, Chia Wei
  • 通讯作者:
    Hsu, Chia Wei
Fast Multichannel Inverse Design through Augmented Partial Factorization
  • DOI:
    10.1021/acsphotonics.3c00911
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    7
  • 作者:
    Shiyu Li;Ho-Chun Lin;Chia Wei Hsu
  • 通讯作者:
    Shiyu Li;Ho-Chun Lin;Chia Wei Hsu
Ab initio Theory for Exceptional-Point Lasers and Periodic-Inversion Lasers
异常点激光器和周期反转激光器的从头算理论
  • DOI:
    10.1364/cleo_si.2023.sf2n.8
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gao, Xingwei;He, Hao;Sobolewski, Scott;Hsu, Chia Wei
  • 通讯作者:
    Hsu, Chia Wei
Coherent backscattering of entangled photon pairs
  • DOI:
    10.1038/s41567-022-01895-3
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    19.6
  • 作者:
    Mamoon Safadi;Ohad Lib;Ho-Chun Lin;C. Hsu;A. Goetschy;Y. Bromberg
  • 通讯作者:
    Mamoon Safadi;Ohad Lib;Ho-Chun Lin;C. Hsu;A. Goetschy;Y. Bromberg
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chia Wei Hsu其他文献

Bound states in the continuum
连续谱中的束缚态
  • DOI:
    10.1038/natrevmats.2016.48
  • 发表时间:
    2016-07-19
  • 期刊:
  • 影响因子:
    86.200
  • 作者:
    Chia Wei Hsu;Bo Zhen;A. Douglas Stone;John D. Joannopoulos;Marin Soljačić
  • 通讯作者:
    Marin Soljačić
Delivering Broadband Light Deep into Diffusive Media
将宽带光深入扩散介质
Quantum Noise Theory of Exceptional Point Sensors
特殊点传感器的量子噪声理论
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mengzhen Zhang;William R. Sweeney;Chia Wei Hsu;Lan Yang;A. D. Stone;Liang Jiang
  • 通讯作者:
    Liang Jiang
Scattering matrix tomography: deep imaging with digital gates
散射矩阵断层扫描:使用数字门进行深度成像
Dynamic gain and frequency comb formation in exceptional-point lasers
异常点激光器中的动态增益与频率梳形成
  • DOI:
    10.1038/s41467-024-52957-4
  • 发表时间:
    2024-10-04
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Xingwei Gao;Hao He;Scott Sobolewski;Alexander Cerjan;Chia Wei Hsu
  • 通讯作者:
    Chia Wei Hsu

Chia Wei Hsu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于Nonlocal的MRI脑肿瘤图像分割方法的研究
  • 批准号:
    11426205
  • 批准年份:
    2014
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

Nonlocal Elastic Metamaterials: Leveraging Intentional Nonlocality to Design Programmable Structures
非局域弹性超材料:利用有意的非局域性来设计可编程结构
  • 批准号:
    2330957
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Exploring Large-Scale Geometry via Local and Nonlocal Potential Theory
通过局部和非局部势理论探索大尺度几何
  • 批准号:
    2348748
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Nonlocal Magneto-Curvature Instabilities and their Associated Nonlinear Transport in Astrophysical Disks
天体物理盘中的非局域磁曲率不稳定性及其相关的非线性输运
  • 批准号:
    2308839
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Nonlocal Variational Problems from Physical and Biological Models
物理和生物模型的非局部变分问题
  • 批准号:
    2306962
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Analysis of the effect of integral kernel shape on pattern formation in nonlocal reaction-diffusion equations
积分核形状对非局部反应扩散方程模式形成的影响分析
  • 批准号:
    23K13013
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Stability for nonlocal curvature functionals
非局部曲率泛函的稳定性
  • 批准号:
    EP/W014807/2
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
Nonlocal Hydrodynamic Models of Interacting Agents
相互作用主体的非局域流体动力学模型
  • 批准号:
    EP/V000586/2
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Fellowship
New perspectives on nonlocal equations
非局部方程的新视角
  • 批准号:
    FT230100333
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    ARC Future Fellowships
Extension and demonstration of two-particle-level computational theory based on dimensionality reduction to nonlocal electron correlation effects
基于降维非局域电子相关效应的双粒子级计算理论的推广与论证
  • 批准号:
    22KK0226
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
CAREER: Numerical Analysis for Meshfree and Particle Methods via Nonlocal Models
职业:通过非局部模型进行无网格和粒子方法的数值分析
  • 批准号:
    2240180
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了