Nonlocal Hydrodynamic Models of Interacting Agents

相互作用主体的非局域流体动力学模型

基本信息

  • 批准号:
    EP/V000586/2
  • 负责人:
  • 金额:
    $ 68.55万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Agents in an interacting system typically organise their dynamics based on the behaviour of their neighbours. This is often observed in the animal kingdom - herds of mammals, schools of fish, flocks of birds - but also in a variety of economic, engineering, and social settings. Usually, due to huge number of agents in the system, detailed, microscopic description of such behaviour is impossible to analyse and to simulate numerically, and thus its applicability is rather limited.Instead, in this project we propose to focus on the macroscopic models described by systems of Partial Differential Equations (PDEs). These equations allow us to capture interactions between multiple agents/species/phases in an elegant reformulation involving a small number of nonlocal hydrodynamic conservation laws. It often leads to completely unexplored classes of systems, but also opens the possibility of using a wide range of tools and techniques from the modern theory of PDEs to provide essential insight into the dynamics of large complex systems of interacting agents.Solving the fundamental problems from the objectives of this proposal will provide a profound mathematical understanding of PDEs emerging in the modelling of collective behaviour. It will allow us to characterise the qualitative properties of the macroscopic models, and to asses whether they are fit to describe the achieving of consensus or emergence of complex patterns observable in nature. We are especially excited to gain this knowledge for the formally derived macroscopic models, as this could provide the arguments for their validity and applicability.The long-term goal of the project is to use the multidisciplinary environment of the University College London to establish a new research group developing and analysing new PDE models, along with novel numerical techniques for emerging challenges in Mathematical Biology and Mathematical Physics. The core of this environment will be a team composed of the PI, two PDRAs and the UCL funded PhD student. Results will be widely disseminated in diverse environments, including the mathematical fluid mechanics and kinetic theory communities, but also within other disciplines such as computational science, or civil engineering.
交互系统中的代理通常根据其邻居的行为来组织其动态。这在动物王国--成群的哺乳动物、鱼群、鸟群--以及各种经济、工程和社会环境中经常可以观察到。通常情况下,由于系统中的代理数量庞大,这种行为的详细,微观的描述是不可能的分析和数值模拟,因此它的适用性是相当有限的。相反,在这个项目中,我们建议专注于宏观模型描述的偏微分方程(PDE)系统。这些方程使我们能够捕捉到多个代理/物种/相位之间的相互作用,在一个优雅的重新涉及少量的非局部流体动力守恒定律。它往往会导致完全未开发的系统类,但也打开了使用广泛的工具和技术的可能性,从现代理论的偏微分方程提供必要的洞察大型复杂系统的动态相互作用agents.Solving的基本问题,从这个建议的目标将提供一个深刻的数学理解偏微分方程出现在集体行为的建模。它将使我们能够验证宏观模型的定性性质,并评估它们是否适合描述自然界中可观察到的复杂模式的达成或出现。我们特别兴奋地获得这方面的知识,为正式派生的宏观模型,因为这可以提供他们的有效性和application.The长期目标的论据,该项目是利用多学科环境的大学学院伦敦建立一个新的研究小组开发和分析新的PDE模型,沿着新的数值技术,在数学生物学和数学物理学的新兴挑战。这个环境的核心将是一个由PI,两个PDRA和UCL资助的博士生组成的团队。结果将在不同的环境中广泛传播,包括数学流体力学和动力学理论社区,但也在其他学科,如计算科学或土木工程。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ewelina Zatorska其他文献

Global Solutions of the One-Dimensional Compressible Euler Equations with Nonlocal Interactions via the Inviscid Limit
  • DOI:
    10.1007/s00205-025-02097-w
  • 发表时间:
    2025-05-24
  • 期刊:
  • 影响因子:
    2.400
  • 作者:
    José A. Carrillo;Gui-Qiang G. Chen;Difan Yuan;Ewelina Zatorska
  • 通讯作者:
    Ewelina Zatorska
Large time behavior for a compressible two-fluid model with algebraic pressure closure and large initial data
具有代数压力闭合和大初始数据的可压缩双流体模型的大时间行为
  • DOI:
    10.1088/1361-6544/ab801c
  • 发表时间:
    2018-11
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Yang Li;Yongzhong Sun;Ewelina Zatorska
  • 通讯作者:
    Ewelina Zatorska
Construction of weak solutions to a model of pressureless viscous flow driven by nonlocal attraction–repulsion
无压力粘性流的非局部吸引-排斥驱动模型弱解的构造
Two-Phase Compressible/Incompressible Navier–Stokes System with Inflow-Outflow Boundary Conditions
  • DOI:
    10.1007/s00021-022-00715-1
  • 发表时间:
    2022-07-22
  • 期刊:
  • 影响因子:
    1.300
  • 作者:
    Milan Pokorný;Aneta Wróblewska-Kamińska;Ewelina Zatorska
  • 通讯作者:
    Ewelina Zatorska

Ewelina Zatorska的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ewelina Zatorska', 18)}}的其他基金

Nonlocal Hydrodynamic Models of Interacting Agents
相互作用主体的非局域流体动力学模型
  • 批准号:
    EP/V000586/1
  • 财政年份:
    2021
  • 资助金额:
    $ 68.55万
  • 项目类别:
    Fellowship

相似国自然基金

Galaxy Analytical Modeling Evolution (GAME) and cosmological hydrodynamic simulations.
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
半导体Hydrodynamic能量模型的数学分析
  • 批准号:
    10001034
  • 批准年份:
    2000
  • 资助金额:
    5.5 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Rationalizing Potentials in Quantum Mechanics Through Hydrodynamic Quantum Analogues and Coarse-Grained Coupling Models
通过流体动力学量子模拟和粗粒度耦合模型合理化量子力学的潜力
  • 批准号:
    568247-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 68.55万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Collaborative Research: Spectral and Radiation Hydrodynamic Models of Photospheric Radius Expansion X-ray Bursts
合作研究:光球半径膨胀X射线爆发的光谱和辐射流体动力学模型
  • 批准号:
    2107528
  • 财政年份:
    2021
  • 资助金额:
    $ 68.55万
  • 项目类别:
    Continuing Grant
Collaborative Research: Spectral and Radiation Hydrodynamic Models of Photospheric Radius Expansion X-ray Bursts
合作研究:光球半径膨胀X射线爆发的光谱和辐射流体动力学模型
  • 批准号:
    2107218
  • 财政年份:
    2021
  • 资助金额:
    $ 68.55万
  • 项目类别:
    Continuing Grant
Nonlocal Hydrodynamic Models of Interacting Agents
相互作用主体的非局域流体动力学模型
  • 批准号:
    EP/V000586/1
  • 财政年份:
    2021
  • 资助金额:
    $ 68.55万
  • 项目类别:
    Fellowship
A Novel Riemann Solver for Modelling Partial Barriers to Flow within 2-D Hydrodynamic Models
一种新型黎曼求解器,用于模拟二维流体动力学模型中的部分流动障碍
  • 批准号:
    2440403
  • 财政年份:
    2020
  • 资助金额:
    $ 68.55万
  • 项目类别:
    Studentship
Active Smectic Hydrodynamic Models of Colony Growth.
菌落生长的主动近晶流体动力学模型。
  • 批准号:
    2295765
  • 财政年份:
    2019
  • 资助金额:
    $ 68.55万
  • 项目类别:
    Studentship
Building Models of the Universe with Hydrodynamic Simulations
通过流体动力学模拟构建宇宙模型
  • 批准号:
    2317773
  • 财政年份:
    2019
  • 资助金额:
    $ 68.55万
  • 项目类别:
    Studentship
PROBABALISTIC CALIBRATION OF HYDRODYNAMIC MODELS
流体动力学模型的概率校准
  • 批准号:
    1702206
  • 财政年份:
    2016
  • 资助金额:
    $ 68.55万
  • 项目类别:
    Studentship
Improving low-mass star models using 3D hydrodynamic simulations and asteroseismology
使用 3D 流体动力学模拟和星震学改进低质量恒星模型
  • 批准号:
    1790289
  • 财政年份:
    2016
  • 资助金额:
    $ 68.55万
  • 项目类别:
    Studentship
Towards a unified approach for the hydrodynamic modelling of WECs: Effective linkage of non-linearity and viscous damping in potential flow models
走向 WEC 流体动力学建模的统一方法:势流模型中非线性和粘性阻尼的有效联系
  • 批准号:
    EP/M019977/1
  • 财政年份:
    2014
  • 资助金额:
    $ 68.55万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了