D-ISN/Collaborative Research: An Interdisciplinary Approach to the Discovery, Analysis, and Disruption of Wildlife Trafficking Networks
D-ISN/ — 合作研究:发现、分析和破坏野生动物贩运网络的跨学科方法
基本信息
- 批准号:2146351
- 负责人:
- 金额:$ 21.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This Disrupting Operations of Illicit Supply Networks (D-ISN) project aims to address the illegal trade in wild animals. Wildlife trafficking is one of the most common illicit activities globally and poses a substantial human cost along with detrimental social and economic impacts, including increased crime, violence, and environmental destruction. The COVID-19 pandemic, likely the result of a virus that spread to humans from a wildlife market, demonstrates that wildlife trafficking can have serious public health and biosafety implications. This project seeks to catalyze technological innovations by creating tools that empower domain experts to continuously discover and obtain actionable insights by exploring the wealth of data related to illicit networks that spread over multiple sources. The project will advance our Nation's ability to counter wildlife trafficking activities through novel approaches for data discovery, analytics, and modeling. The project will also promote the progress of research in criminal activities that have an online footprint. Data collected in the course of the project will be made publicly available through a dataset search engine, making it possible for researchers to enrich data-driven analyses through the dynamic discovery and linkage of previously unknown data, and allowing them to answer important questions. The project team's collaboration with non-governmental organizations and discussions with law enforcement agencies will facilitate an interactive process that can fine-tune disruption techniques and suggest pragmatic real-world implementation strategies and policy recommendations.The project uses an interdisciplinary approach – combining methods and tools from computer science and engineering as well as wildlife criminology to advance the state of the art and build fundamental knowledge in methods for the discovery and exploration of data related to illicit activities with an online footprint, as well as enhance wildlife trafficking research. Specifically, this project contributes new algorithms that provide capabilities to: 1) discover and automatically collect data related to wildlife trafficking from multiple platforms at an unprecedented scale; and 2) use these data to build computational models and study wildlife trafficking patterns and networks at the global level. Through the use of analytical techniques such as crime mapping, quantitative data analysis, and social network analysis, this project will address research questions related to the scale and the nature of illicit wildlife trade, network structures of online wildlife trafficking, and empirically-driven disruption models that can be used to best tackle them. The algorithms are adaptable to different domains and data, support the discovery of both unstructured data and structured datasets, and will serve as the basis for usable tools that empower domain experts to continuously discover and monitor relevant data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在打击野生动物非法贸易。野生动物贩运是全球最常见的非法活动之一,造成了巨大的人力成本沿着有害的社会和经济影响,包括犯罪、暴力和环境破坏的增加。COVID-19大流行可能是一种病毒从野生动物市场传播给人类的结果,表明野生动物贩运可能对公共卫生和生物安全产生严重影响。 该项目旨在通过创建工具来促进技术创新,这些工具使领域专家能够通过探索与分布在多个来源的非法网络相关的大量数据来不断发现和获得可操作的见解。该项目将通过数据发现、分析和建模的新方法,提高我们国家打击野生动物贩运活动的能力。 该项目还将促进对有网上足迹的犯罪活动的研究进展。在项目过程中收集的数据将通过数据集搜索引擎公开提供,使研究人员能够通过动态发现和链接以前未知的数据来丰富数据驱动的分析,并使他们能够回答重要问题。该项目小组与非政府组织的合作以及与执法机构的讨论将促进一个互动过程,该过程可以微调破坏技术,并提出务实的现实世界实施战略和政策建议。结合计算机科学和工程以及野生动物犯罪学的方法和工具,以推进最先进的技术水平,掌握发现和探索与网上足迹的非法活动有关的数据的方法,并加强对野生动物贩运的研究。具体而言,该项目贡献了新的算法,提供以下能力:1)以前所未有的规模从多个平台发现和自动收集与野生动物贩运有关的数据; 2)使用这些数据建立计算模型,并在全球范围内研究野生动物贩运模式和网络。 通过使用犯罪地图、定量数据分析和社交网络分析等分析技术,该项目将解决与非法野生动物贸易的规模和性质、在线野生动物贩运的网络结构以及可用于最好地解决这些问题的有害生物驱动的破坏模型有关的研究问题。 这些算法适用于不同的领域和数据,支持非结构化数据和结构化数据集的发现,并将作为可用工具的基础,使领域专家能够持续发现和监控相关数据。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sunandan Chakraborty其他文献
Managing microfinance with paper, pen and digital slate
用纸、笔和数字板管理小额信贷
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Aishwarya Ratan;K. Toyama;Sunandan Chakraborty;Keng Siang Ooi;Mike Koenig;P. Chitnis;Matthew Phiong - 通讯作者:
Matthew Phiong
Big Data Analytics for Development: Events, Knowledge Graphs and Predictive Models
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Sunandan Chakraborty - 通讯作者:
Sunandan Chakraborty
A Co-Training Model with Label Propagation on a Bipartite Graph to Identify Online Users with Disabilities
在二分图上使用标签传播的协同训练模型来识别残疾在线用户
- DOI:
10.1609/icwsm.v13i01.3268 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Xing Yu;Sunandan Chakraborty;Erin L. Brady - 通讯作者:
Erin L. Brady
Prevalence of endangered shark trophies in automated detection of the online wildlife trade
在线野生动物贸易的自动监测中濒危鲨鱼战利品的流行情况
- DOI:
10.1016/j.biocon.2025.110992 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:4.400
- 作者:
Sunandan Chakraborty;Spencer N. Roberts;Gohar A. Petrossian;Monique Sosnowski;Juliana Freire;Jennifer Jacquet - 通讯作者:
Jennifer Jacquet
Extraction of (Key, Value) Pairs from Unstructured Ads
从非结构化广告中提取(键,值)对
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Sunandan Chakraborty;L. Subramanian;Yaw Nyarko - 通讯作者:
Yaw Nyarko
Sunandan Chakraborty的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sunandan Chakraborty', 18)}}的其他基金
CRII: III: Capturing Dynamism in Causal Relationships: A New Paradigm for Relationship Extraction from Text
CRII:III:捕捉因果关系的动态:从文本中提取关系的新范式
- 批准号:
1948322 - 财政年份:2020
- 资助金额:
$ 21.66万 - 项目类别:
Standard Grant
相似海外基金
D-ISN/Collaborative Research: Machine Learning to Improve Detection and Traceability of Forest Products using Stable Isotope Ratio Analysis (SIRA)
D-ISN/合作研究:利用稳定同位素比率分析 (SIRA) 提高林产品检测和可追溯性的机器学习
- 批准号:
2240403 - 财政年份:2023
- 资助金额:
$ 21.66万 - 项目类别:
Standard Grant
D-ISN/Collaborative Research: Early Warning Systems for Emerging Epidemics of Illicit Substances
D-ISN/合作研究:非法物质新出现流行病的早期预警系统
- 批准号:
2240409 - 财政年份:2023
- 资助金额:
$ 21.66万 - 项目类别:
Standard Grant
D-ISN/Collaborative Research: Mitigating the Harm of Fentanyl through Holistic Demand/Supply Interventions and Equitable Resource Allocations
D-ISN/合作研究:通过整体需求/供应干预和公平资源分配减轻芬太尼的危害
- 批准号:
2240359 - 财政年份:2023
- 资助金额:
$ 21.66万 - 项目类别:
Standard Grant
D-ISN/Collaborative Research: Disrupting West Virginia's Opioid Crisis: a Multi-disciplinary Approach through Interdiction and Harm Reduction
D-ISN/合作研究:扰乱西弗吉尼亚州的阿片类药物危机:通过拦截和减少危害采取多学科方法
- 批准号:
2240361 - 财政年份:2023
- 资助金额:
$ 21.66万 - 项目类别:
Standard Grant
D-ISN/Collaborative Research: Mitigating the Harm of Fentanyl through Holistic Demand/Supply Interventions and Equitable Resource Allocations
D-ISN/合作研究:通过整体需求/供应干预和公平资源分配减轻芬太尼的危害
- 批准号:
2240360 - 财政年份:2023
- 资助金额:
$ 21.66万 - 项目类别:
Standard Grant
D-ISN/Collaborative Research: Machine Learning to Improve Detection and Traceability of Forest Products using Stable Isotope Ratio Analysis (SIRA)
D-ISN/合作研究:利用稳定同位素比率分析 (SIRA) 提高林产品检测和可追溯性的机器学习
- 批准号:
2240402 - 财政年份:2023
- 资助金额:
$ 21.66万 - 项目类别:
Standard Grant
D-ISN/Collaborative Research: Early Warning Systems for Emerging Epidemics of Illicit Substances
D-ISN/合作研究:非法物质新出现流行病的早期预警系统
- 批准号:
2240408 - 财政年份:2023
- 资助金额:
$ 21.66万 - 项目类别:
Standard Grant
D-ISN/Collaborative Research: Disrupting West Virginia's Opioid Crisis: a Multi-disciplinary Approach through Interdiction and Harm Reduction
D-ISN/合作研究:扰乱西弗吉尼亚州的阿片类药物危机:通过拦截和减少危害采取多学科方法
- 批准号:
2240362 - 财政年份:2023
- 资助金额:
$ 21.66万 - 项目类别:
Standard Grant
D-ISN/Collaborative Research: Disrupting West Virginia's Opioid Crisis: a Multi-disciplinary Approach through Interdiction and Harm Reduction
D-ISN/合作研究:扰乱西弗吉尼亚州的阿片类药物危机:通过拦截和减少危害采取多学科方法
- 批准号:
2240363 - 财政年份:2023
- 资助金额:
$ 21.66万 - 项目类别:
Standard Grant
D-ISN/Collaborative Research: An Interdisciplinary Approach to the Discovery, Analysis, and Disruption of Wildlife Trafficking Networks
D-ISN/ — 合作研究:发现、分析和破坏野生动物贩运网络的跨学科方法
- 批准号:
2146306 - 财政年份:2022
- 资助金额:
$ 21.66万 - 项目类别:
Standard Grant